NAG Library Routine Document
C05NCF
1 Purpose
C05NCF is a comprehensive routine that finds a solution of a system of nonlinear equations by a modification of the Powell hybrid method.
2 Specification
SUBROUTINE C05NCF ( 
FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG, MODE, FACTOR, NPRINT, NFEV, FJAC, LDFJAC, R, LR, QTF, W, IFAIL) 
INTEGER 
N, MAXFEV, ML, MU, MODE, NPRINT, NFEV, LDFJAC, LR, IFAIL 
REAL (KIND=nag_wp) 
X(N), FVEC(N), XTOL, EPSFCN, DIAG(N), FACTOR, FJAC(LDFJAC,N), R(N*(N+1)/2), QTF(N), W(1,1) 
EXTERNAL 
FCN 

3 Description
The system of equations is defined as:
C05NCF is based on the MINPACK routine HYBRD (see
Moré et al. (1980)). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. The Jacobian is updated by the rank1 method of Broyden. At the starting point, the Jacobian is approximated by forward differences, but these are not used again until the rank1 method fails to produce satisfactory progress. For more details see
Powell (1970).
4 References
Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK1 Technical Report ANL8074 Argonne National Laboratory
Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach
5 Parameters
 1: FCN – SUBROUTINE, supplied by the user.External Procedure
FCN must return the values of the functions
${f}_{i}$ at a point
$x$.
The specification of
FCN is:
INTEGER 
N, IFLAG 
REAL (KIND=nag_wp) 
X(N), FVEC(N) 

 1: N – INTEGERInput
On entry: $n$, the number of equations.
 2: X(N) – REAL (KIND=nag_wp) arrayInput
On entry: the components of the point $x$ at which the functions must be evaluated.
 3: FVEC(N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
${\mathbf{IFLAG}}=0$,
FVEC contains the function values
${f}_{i}\left(x\right)$ and must not be changed.
On exit: if
${\mathbf{IFLAG}}>0$ on entry,
FVEC must contain the function values
${f}_{i}\left(x\right)$ (unless
IFLAG is set to a negative value by
FCN).
 4: IFLAG – INTEGERInput/Output
On entry:
${\mathbf{IFLAG}}\ge 0$.
 ${\mathbf{IFLAG}}=0$
 X and FVEC are available for printing (see NPRINT below).
 ${\mathbf{IFLAG}}>0$
 FVEC must be updated.
On exit: in general,
IFLAG should not be reset by
FCN. If, however, you wish to terminate execution (perhaps because some illegal point
X has been reached), then
IFLAG should be set to a negative integer. This value will be returned through
IFAIL.
FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which C05NCF is called. Parameters denoted as
Input must
not be changed by this procedure.
 2: N – INTEGERInput
On entry: $n$, the number of equations.
Constraint:
${\mathbf{N}}>0$.
 3: X(N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: an initial guess at the solution vector.
On exit: the final estimate of the solution vector.
 4: FVEC(N) – REAL (KIND=nag_wp) arrayOutput
On exit: the function values at the final point returned in
X.
 5: XTOL – REAL (KIND=nag_wp)Input
On entry: the accuracy in
X to which the solution is required.
Suggested value:
$\sqrt{\epsilon}$, where
$\epsilon $ is the
machine precision returned by
X02AJF.
Constraint:
${\mathbf{XTOL}}\ge 0.0$.
 6: MAXFEV – INTEGERInput
On entry: the maximum number of calls to
FCN with
${\mathbf{IFLAG}}\ne 0$. C05NCF will exit with
${\mathbf{IFAIL}}={\mathbf{2}}$, if, at the end of an iteration, the number of calls to
FCN exceeds
MAXFEV.
Suggested value:
${\mathbf{MAXFEV}}=200\times \left({\mathbf{N}}+1\right)$.
Constraint:
${\mathbf{MAXFEV}}>0$.
 7: ML – INTEGERInput
On entry: the number of subdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set ${\mathbf{ML}}={\mathbf{N}}1$.)
Constraint:
${\mathbf{ML}}\ge 0$.
 8: MU – INTEGERInput
On entry: the number of superdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set ${\mathbf{MU}}={\mathbf{N}}1$.)
Constraint:
${\mathbf{MU}}\ge 0$.
 9: EPSFCN – REAL (KIND=nag_wp)Input
On entry: a rough estimate of the largest relative error in the functions. It is used in determining a suitable step for a forward difference approximation to the Jacobian. If
EPSFCN is less than
machine precision (returned by
X02AJF) then
machine precision is used. Consequently a value of
$0.0$ will often be suitable.
Suggested value:
${\mathbf{EPSFCN}}=0.0$.
 10: DIAG(N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
${\mathbf{MODE}}=2$,
DIAG must contain multiplicative scale factors for the variables.
If
${\mathbf{MODE}}=1$,
DIAG need not be set.
Constraint:
if ${\mathbf{MODE}}=2$, ${\mathbf{DIAG}}\left(\mathit{i}\right)>0.0$, for $\mathit{i}=1,2,\dots ,n$.
On exit: the scale factors actually used (computed internally if ${\mathbf{MODE}}=1$).
 11: MODE – INTEGERInput
On entry: indicates whether or not you have provided scaling factors in
DIAG.
If
${\mathbf{MODE}}=2$ the scaling must have been specified in
DIAG.
Otherwise, the variables will be scaled internally.
 12: FACTOR – REAL (KIND=nag_wp)Input
On entry: a quantity to be used in determining the initial step bound. In most cases,
FACTOR should lie between
$0.1$ and
$100.0$. (The step bound is
${\mathbf{FACTOR}}\times {\Vert {\mathbf{DIAG}}\times {\mathbf{X}}\Vert}_{2}$ if this is nonzero; otherwise the bound is
FACTOR.)
Suggested value:
${\mathbf{FACTOR}}=100.0$.
Constraint:
${\mathbf{FACTOR}}>0.0$.
 13: NPRINT – INTEGERInput
On entry: indicates whether (and how often) special calls to
FCN, with
IFLAG set to
$0$, are to be made for printing purposes.
 ${\mathbf{NPRINT}}\le 0$
 No calls are made.
 ${\mathbf{NPRINT}}>0$
 FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and immediately before the return from C05NCF.
 14: NFEV – INTEGEROutput
On exit: the number of calls made to
FCN.
 15: FJAC(LDFJAC,N) – REAL (KIND=nag_wp) arrayOutput
On exit: the orthogonal matrix $Q$ produced by the $QR$ factorisation of the final approximate Jacobian.
 16: LDFJAC – INTEGERInput
On entry: the first dimension of the array
FJAC as declared in the (sub)program from which C05NCF is called.
Constraint:
${\mathbf{LDFJAC}}\ge {\mathbf{N}}$.
 17: R(${\mathbf{N}}\times \left({\mathbf{N}}+1\right)/2$) – REAL (KIND=nag_wp) arrayOutput
On exit: the upper triangular matrix $R$ produced by the $QR$ factorization of the final approximate Jacobian, stored rowwise.
 18: LR – INTEGERDummy
This parameter is no longer accessed by C05NCF.
 19: QTF(N) – REAL (KIND=nag_wp) arrayOutput
On exit: the vector ${Q}^{\mathrm{T}}f$.
 20: W($1$,$1$) – REAL (KIND=nag_wp) arrayInput
This parameter is no longer accessed by C05NCF. Workspace is provided internally by dynamic allocation instead.
 21: IFAIL – INTEGERInput/Output

On entry:
IFAIL must be set to
$0$,
$1\text{ or}1$. If you are unfamiliar with this parameter you should refer to
Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
$1\text{ or}1$ is recommended. If the output of error messages is undesirable, then the value
$1$ is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is
$0$.
When the value $\mathbf{1}\text{ or}\mathbf{1}$ is used it is essential to test the value of IFAIL on exit.
On exit:
${\mathbf{IFAIL}}={\mathbf{0}}$ unless the routine detects an error or a warning has been flagged (see
Section 6).
6 Error Indicators and Warnings
If on entry
${\mathbf{IFAIL}}={\mathbf{0}}$ or
${{\mathbf{1}}}$, explanatory error messages are output on the current error message unit (as defined by
X04AAF).
Errors or warnings detected by the routine:
 ${\mathbf{IFAIL}}<0$
This indicates an exit from C05NCF because you have set
IFLAG negative in
FCN. The value of
IFAIL will be the same as your setting of
IFLAG.
 ${\mathbf{IFAIL}}=1$
On entry,  ${\mathbf{N}}\le 0$, 
or  ${\mathbf{XTOL}}<0.0$, 
or  ${\mathbf{MAXFEV}}\le 0$, 
or  ${\mathbf{ML}}<0$, 
or  ${\mathbf{MU}}<0$, 
or  ${\mathbf{FACTOR}}\le 0.0$, 
or  ${\mathbf{LDFJAC}}<{\mathbf{N}}$, 
or  ${\mathbf{MODE}}=2$ and ${\mathbf{DIAG}}\left(\mathit{i}\right)\le 0.0$ for some $\mathit{i}$, for $\mathit{i}=1,2,\dots ,{\mathbf{N}}$. 
 ${\mathbf{IFAIL}}=2$
There have been at least
MAXFEV evaluations of
FCN. Consider restarting the calculation from the final point held in
X.
 ${\mathbf{IFAIL}}=3$
No further improvement in the approximate solution
X is possible;
XTOL is too small.
 ${\mathbf{IFAIL}}=4$

The iteration is not making good progress, as measured by the improvement from the last five Jacobian evaluations.
 ${\mathbf{IFAIL}}=5$

The iteration is not making good progress, as measured by the improvement from the last ten iterations.
 ${\mathbf{IFAIL}}=999$

Internal memory allocation failed.
The values
${\mathbf{IFAIL}}={\mathbf{4}}$ and
${\mathbf{5}}$ may indicate that the system does not have a zero, or that the solution is very close to the origin (see
Section 7). Otherwise, rerunning C05NCF from a different starting point may avoid the region of difficulty.
7 Accuracy
If
$\hat{x}$ is the true solution and
$D$ denotes the diagonal matrix whose entries are defined by the array
DIAG, then C05NCF tries to ensure that
If this condition is satisfied with
${\mathbf{XTOL}}={10}^{k}$, then the larger components of
$Dx$ have
$k$ significant decimal digits. There is a danger that the smaller components of
$Dx$ may have large relative errors, but the fast rate of convergence of C05NCF usually obviates this possibility.
If
XTOL is less than
machine precision and the above test is satisfied with the
machine precision in place of
XTOL, then the routine exits with
${\mathbf{IFAIL}}={\mathbf{3}}$.
Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.
The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then C05NCF may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning C05NCF with a lower value for
XTOL.
Local workspace arrays of fixed lengths are allocated internally by C05NCF. The total size of these arrays amounts to $4\times {\mathbf{N}}$ real elements.
The time required by C05NCF to solve a given problem depends on
$n$, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05NCF to process each call of
FCN is about
$11.5\times {n}^{2}$. Unless
FCN can be evaluated quickly, the timing of C05NCF will be strongly influenced by the time spent in
FCN.
Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.
The number of function evaluations required to evaluate the Jacobian may be reduced if you can specify
ML and
MU.
9 Example
This example determines the values
${x}_{1},\dots ,{x}_{9}$ which satisfy the tridiagonal equations:
9.1 Program Text
Program Text (c05ncfe.f90)
9.2 Program Data
None.
9.3 Program Results
Program Results (c05ncfe.r)