Program f08csfe ! F08CSF Example Program Text ! Mark 24 Release. NAG Copyright 2012. ! .. Use Statements .. Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgeqlf, ztrtrs, zunmql ! .. Implicit None Statement .. Implicit None ! .. Parameters .. Integer, Parameter :: nb = 64, nin = 5, nout = 6 ! .. Local Scalars .. Integer :: i, ifail, info, j, lda, ldb, lwork, & m, n, nrhs ! .. Local Arrays .. Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:) Real (Kind=nag_wp), Allocatable :: rnorm(:) Character (1) :: clabs(1), rlabs(1) ! .. Executable Statements .. Write (nout,*) 'F08CSF Example Program Results' Write (nout,*) Flush (nout) ! Skip heading in data file Read (nin,*) Read (nin,*) m, n, nrhs lda = m ldb = m lwork = nb*n Allocate (a(lda,n),b(ldb,nrhs),tau(n),work(lwork),rnorm(nrhs)) ! Read A and B from data file Read (nin,*)(a(i,1:n),i=1,m) Read (nin,*)(b(i,1:nrhs),i=1,m) ! Compute the QL factorization of A ! The NAG name equivalent of zgeqlf is f08csf Call zgeqlf(m,n,a,lda,tau,work,lwork,info) ! Compute C = (C1) = (Q**H)*B, storing the result in B ! (C2) ! The NAG name equivalent of zunmql is f08cuf Call zunmql('Left','Conjugate Transpose',m,nrhs,n,a,lda,tau,b,ldb,work, & lwork,info) ! Compute least-squares solutions by backsubstitution in ! L*X = C2 ! The NAG name equivalent of ztrtrs is f07tsf Call ztrtrs('Lower','No transpose','Non-Unit',n,nrhs,a(m-n+1,1),lda, & b(m-n+1,1),ldb,info) If (info>0) Then Write (nout,*) 'The lower triangular factor, L, of A is singular, ' Write (nout,*) 'the least squares solution could not be computed' Else ! Print least-squares solution(s) ! ifail: behaviour on error exit ! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft ifail = 0 Call x04dbf('General',' ',n,nrhs,b(m-n+1,1),ldb,'Bracketed','F7.4', & 'Least-squares solution(s)','Integer',rlabs,'Integer',clabs,80,0, & ifail) ! Compute and print estimates of the square roots of the residual ! sums of squares ! The NAG name equivalent of dznrm2 is f06jjf Do j = 1, nrhs rnorm(j) = dznrm2(m-n,b(1,j),1) End Do Write (nout,*) Write (nout,*) 'Square root(s) of the residual sum(s) of squares' Write (nout,99999) rnorm(1:nrhs) End If 99999 Format (3X,1P,7E11.2) End Program f08csfe