D Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual

Keyword : Distribution

G01BJF   Binomial distribution function
G01BKF   Poisson distribution function
G01BLF   Hypergeometric distribution function
G01EAF   Computes probabilities for the standard Normal distribution
G01ECF   Computes probabilities for χ2 distribution
G01EEF   Computes upper and lower tail probabilities and probability density function for the beta distribution
G01EFF   Computes probabilities for the gamma distribution
G01ERF   Computes probability for von Mises distribution
G01ETF   Landau distribution function Φ (λ)
G01EUF   Vavilov distribution function ΦV(λ ; κ,β2)
G01EYF   Computes probabilities for the one-sample Kolmogorov–Smirnov distribution
G01EZF   Computes probabilities for the two-sample Kolmogorov–Smirnov distribution
G01FAF   Computes deviates for the standard Normal distribution
G01FCF   Computes deviates for the χ2 distribution
G01FEF   Computes deviates for the beta distribution
G01FFF   Computes deviates for the gamma distribution
G01GCF   Computes probabilities for the non-central χ2 distribution
G01GEF   Computes probabilities for the non-central beta distribution
G01HAF   Computes probability for the bivariate Normal distribution
G01HBF   Computes probabilities for the multivariate Normal distribution
G01HCF   Computes probabilities for the bivariate Student's t-distribution
G01KAF   Calculates the value for the probability density function of the Normal distribution at a chosen point
G01KFF   Calculates the value for the probability density function of the gamma distribution at a chosen point
G05RZF   Generates a matrix of pseudorandom numbers from a multivariate Normal distribution
G05SAF   Generates a vector of pseudorandom numbers from a uniform distribution over (0,1]
G05SBF   Generates a vector of pseudorandom numbers from a beta distribution
G05SCF   Generates a vector of pseudorandom numbers from a Cauchy distribution
G05SDF   Generates a vector of pseudorandom numbers from a χ2 distribution
G05SEF   Generates a vector of pseudorandom numbers from a Dirichlet distribution
G05SFF   Generates a vector of pseudorandom numbers from an exponential distribution
G05SGF   Generates a vector of pseudorandom numbers from an exponential mix distribution
G05SJF   Generates a vector of pseudorandom numbers from a gamma distribution
G05SKF   Generates a vector of pseudorandom numbers from a Normal distribution
G05SLF   Generates a vector of pseudorandom numbers from a logistic distribution
G05SMF   Generates a vector of pseudorandom numbers from a log-normal distribution
G05SPF   Generates a vector of pseudorandom numbers from a triangular distribution
G05SQF   Generates a vector of pseudorandom numbers from a uniform distribution over [a,b]
G05SRF   Generates a vector of pseudorandom numbers from a von Mises distribution
G05SSF   Generates a vector of pseudorandom numbers from a Weibull distribution
G05TAF   Generates a vector of pseudorandom integers from a binomial distribution
G05TCF   Generates a vector of pseudorandom integers from a geometric distribution
G05TDF   Generates a vector of pseudorandom integers from a general discrete distribution
G05TEF   Generates a vector of pseudorandom integers from a hypergeometric distribution
G05TFF   Generates a vector of pseudorandom integers from a logarithmic distribution
G05TGF   Generates a vector of pseudorandom integers from a multinomial distribution
G05THF   Generates a vector of pseudorandom integers from a negative binomial distribution
G05TJF   Generates a vector of pseudorandom integers from a Poisson distribution
G05TKF   Generates a vector of pseudorandom integers from a Poisson distribution with varying mean
G05TLF   Generates a vector of pseudorandom integers from a uniform distribution
G07AAF   Computes confidence interval for the parameter of a binomial distribution
G07ABF   Computes confidence interval for the parameter of a Poisson distribution
G07BBF   Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
G07BEF   Computes maximum likelihood estimates for parameters of the Weibull distribution
G08CBF   Performs the one-sample Kolmogorov–Smirnov test for standard distributions
G08CCF   Performs the one-sample Kolmogorov–Smirnov test for a user-supplied distribution
G08CGF   Performs the χ2 goodness-of-fit test, for standard continuous distributions
S15ABF   Cumulative Normal distribution function P(x)
S15ACF   Complement of cumulative Normal distribution function Q(x)

D Index Page
Keyword Index for the NAG Library Manual
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford UK. 2011