
NAG Library Function Document

nag_mv_canon_var (g03acc)

1 Purpose

nag_mv_canon_var (g03acc) performs a canonical variate (canonical discrimination) analysis.

2 Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_canon_var (Nag_Weightstype weight, Integer n, Integer m,
const double x[], Integer tdx, const Integer isx[], Integer nx,
const Integer ing[], Integer ng, const double wt[], Integer nig[],
double cvm[], Integer tdcvm, double e[], Integer tde, Integer *ncv,
double cvx[], Integer tdcvx, double tol, Integer *irankx,
NagError *fail)

3 Description

Let a sample of n observations on nx variables in a data matrix come from ng groups with
n1; n2; . . . ; nng observations in each group,

P
ni ¼ n. Canonical variate analysis finds the linear

combination of the nx variables that maximizes the ratio of between-group to within-group variation.
The variables formed, the canonical variates can then be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and
cross-products matrix. However, nag_mv_canon_var (g03acc) calculates the canonical variates by means
of a singular value decomposition (SVD) of a matrix V . Let the data matrix with variable (column)
means subtracted be X, and let its rank be k; then the k by ng � 1

� �
matrix V is given by:

V ¼ QT
XQg; where Qg is an n by ng � 1

� �
orthogonal matrix that defines the groups and QX is the first

k rows of the orthogonal matrix Q either from the QR decomposition of X:

X ¼ QR
if X is of full column rank, i.e., k ¼ nx, else from the SVD of X:

X ¼ QDPT:

Let the SVD of V be:

V ¼ Ux�UT
g

then the nonzero elements of the diagonal matrix �, �i, for i ¼ 1; 2; . . . ; l, are the l canonical correlations
associated with the l canonical variates, where l ¼ min k; ng

� �
.

The eigenvalues, �2
i , of the within-group sums of squares matrix are given by:

�2
i ¼

�2
i

1� �2
i

:

and the value of �i ¼ �2
i =
P
�2
i gives the proportion of variation explained by the ith canonical variate.

The values of the �i’s give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the �2 statistic:

n� 1� ng �
1

2
k� ng
� �� �Xl

j¼iþ1

log 1þ �2
j

� �
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can be used. This is asymptotically distributed as a �2 distribution with k� ið Þ ng � 1� i
� �

degrees of
freedom. If the test for i ¼ h is not significant, then the remaining tests for i > h should be ignored.

The loadings for the canonical variates are calculated from the matrix Ux. This matrix is scaled so that
the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for each
group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each
column and then each row is scaled by an amount

ffiffiffiffiffi
wi
p

, where wi is the weight for the ith observation
(row).

4 References
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2–25
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5 Arguments

1: weight – Nag_Weightstype Input

On entry: indicates the type of weights to be used in the analysis.

weight ¼ Nag NoWeights
No weights are used.

weight ¼ Nag Weightsfreq
The weights are treated as frequencies and the effective number of observations is the sum
of the weights.

weight ¼ Nag Weightsvar
The weights are treated as being inversely proportional to the variance of the observations
and the effective number of observations is the number of observations with nonzero
weights.

Constraint: weight ¼ Nag NoWeights, Nag Weightsfreq or Nag Weightsvar.

2: n – Integer Input

On entry: the number of observations, n.

Constraint: n � nxþ ng.

3: m – Integer Input

On entry: the total number of variables, m.

Constraint: m � nx.

4: x½n� tdx� – const double Input

On entry: x½ i � 1ð Þ � tdxþ j � 1� must contain the ith observation for the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

5: tdx – Integer Input

On entry: the stride separating matrix column elements in the array x.

Constraint: tdx � m.
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6: isx½m� – const Integer Input

On entry: isx½j� 1� indicates whether or not the jth variable is to be included in the analysis.

If isx½j � 1� > 0, then the variable contained in the jth column of x is included in the canonical
variate analysis, for j ¼ 1; 2; . . . ;m.

Constraint: isx½j� 1� > 0 for nx values of j.

7: nx – Integer Input

On entry: the number of variables in the analysis, nx.

Constraint: nx � 1.

8: ing½n� – const Integer Input

On entry: ing½i � 1� indicates which group the ith observation is in, for i ¼ 1; 2; . . . ; n. The
effective number of groups is the number of groups with nonzero membership.

Constraint: 1 � ing½i � 1� � ng, for i ¼ 1; 2; . . . ; n.

9: ng – Integer Input

On entry: the number of groups, ng.

Constraint: ng � 2.

10: wt½n� – const double Input

On entry: if weight ¼ Nag Weightsfreq or Nag Weightsvar then the elements of wt must contain
the weights to be used in the analysis.

If wt½i� 1� ¼ 0:0 then the ith observation is not included in the analysis.

Constraints:

wt½i � 1� � 0:0, for i ¼ 1; 2; . . . ; n;Pn
i¼1wt½i� 1� � nxþ effective number of groups.

Note: if weight ¼ Nag NoWeights then wt is not referenced and may be NULL..

11: nig½ng� – Integer Output

On exit: nig½j � 1� gives the number of observations in group j, for j ¼ 1; 2; . . . ; ng.

12: cvm½ng� tdcvm� – double Output

On exit: cvm½ i � 1ð Þ � tdcvmþ j � 1� contains the mean of the jth canonical variate for the ith
group, for i ¼ 1; 2; . . . ; ng and j ¼ 1; 2; . . . ; l; the remaining columns, if any, are used as
workspace.

13: tdcvm – Integer Input

On entry: the stride separating matrix column elements in the array cvm.

Constraint: tdcvm � nx.

14: e½min nx; ng� 1ð Þ � tde� – double Output

On exit: the statistics of the canonical variate analysis. e½ i � 1ð Þ � tde�, the canonical correlations,
�i, for i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 1�, the eigenvalues of the within-group sum of squares matrix, �2
i , for

i ¼ 1; 2; . . . ; l.

e½ i � 1ð Þ � tdeþ 2�, the proportion of variation explained by the ith canonical variate, for
i ¼ 1; 2; . . . ; l.
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e½ i� 1ð Þ � tdeþ 3�, the �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 4�, the degrees of freedom for �2 statistic for the ith canonical variate, for
i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 5�, the significance level for the �2 statistic for the ith canonical variate, for
i ¼ 1; 2; . . . ; l.

15: tde – Integer Input

On entry: the stride separating matrix column elements in the array e.

Constraint: tde � 6.

16: ncv – Integer * Output

On exit: the number of canonical variates, l. This will be the minimum of ng � 1 and the rank of
x.

17: cvx½nx� tdcvx� – double Output

On exit: the canonical variate loadings. cvx½ i � 1ð Þ � tdcvxþ j � 1� contains the loading
coefficient for the ith variable on the jth canonical variate, for i ¼ 1; 2; . . . ; nx and
j ¼ 1; 2; . . . ; l; the remaining columns, if any, are used as workspace.

18: tdcvx – Integer Input

On entry: the stride separating matrix column elements in the array cvx.

Constraint: tdcvx � ng� 1.

19: tol – double Input

On entry: the value of tol is used to decide if the variables are of full rank and, if not, what is the
rank of the variables. The smaller the value of tol the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of tol less than machine precision is
entered, then the square root of machine precision is used instead.

Constraint: tol � 0:0.

20: irankx – Integer * Output

On exit: the rank of the dependent variables.

If the variables are of full rank then irankx ¼ nx.

If the variables are not of full rank then irankx is an estimate of the rank of the dependent
variables. irankx is calculated as the number of singular values greater than tol�(largest singular
value).

21: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, m ¼ valueh i while nx ¼ valueh i. These arguments must satisfy m � nx.

On entry, tdcvm ¼ valueh i while nx ¼ valueh i. These arguments must satisfy tdcvm � nx.

On entry, tdcvx ¼ valueh i while ng ¼ valueh i. These arguments must satisfy tdcvx � ng� 1.

On entry, tdx ¼ valueh i while m ¼ valueh i. These arguments must satisfy tdx � m.
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NE_3_INT_ARG_CONS

On entry, n ¼ valueh i, nx ¼ valueh i and ng ¼ valueh i. These arguments must satisfy n � nxþ ng.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument weight had an illegal value.

NE_CANON_CORR_1

A canonical correlation is equal to one. This will happen if the variables provide an exact
indication as to which group every observation is allocated.

NE_GROUPS

Either the effective number of groups is less than two or the effective number of groups plus the
number of variables, nx is greater than the effective number of observations.

NE_INT_ARG_LT

On entry, ng ¼ valueh i.
Constraint: ng � 2.

On entry, nx ¼ valueh i.
Constraint: nx � 1.

On entry, tde ¼ valueh i.
Constraint: tde � 6.

NE_INTARR_INT

On entry, ing½ valueh i� ¼ valueh i, ng ¼ valueh i. Constraint: 1 � ing½i � 1� � ng, for
i ¼ 1; 2; . . . ; n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT_ELEMENT

On entry, wt½ valueh i� ¼ valueh i.
Constraint: When referenced, all elements of wt must be non-negative.

NE_RANK_ZERO

The rank of the variables is zero. This will happen if all the variables are constants.

NE_REAL_ARG_LT

On entry, tol must not be less than 0:0: tol ¼ valueh i.

NE_SVD_NOT_CONV

The singular value decomposition has failed to converge. This is an unlikely error exit.

NE_VAR_INCL_INDICATED

The number of variables, nx in the analysis ¼ valueh i, while number of variables included in the
analysis via array isx ¼ valueh i.
Constraint: these two numbers must be the same.
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NE_WT_ARGS

The wt array argument must not be NULL when the weight argument indicates weights.

7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather
than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition,
nag_mv_canon_var (g03acc) should be less affected by ill conditioned problems.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A sample of nine observations, each consisting of three variables plus group indicator, is read in. There
are three groups. An unweighted canonical variate analysis is performed and the results printed.

10.1 Program Text

/* nag_mv_canon_var (g03acc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define X(I, J) x[(I) *tdx + J]
#define E(I, J) e[(I) *tde + J]
#define CVM(I, J) cvm[(I) *tdcvm + J]
#define CVX(I, J) cvx[(I) *tdcvx + J]
int main(void)
{

Integer exit_status = 0, i, irx, j, m, n, ncv, ng;
Integer nx, tdcvm, tdcvx, tde, tdx;
Integer *ing = 0, *isx = 0, *nig = 0;
double *cvm = 0, *cvx = 0, *e = 0, tol, *wt = 0, *x = 0;
char nag_enum_arg[40];
Nag_Weightstype weight;
NagError fail;

INIT_FAIL(fail);

printf("nag_mv_canon_var (g03acc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld", &n);
scanf("%ld", &m);
scanf("%ld", &nx);
scanf("%ld", &ng);
scanf("%39s", nag_enum_arg);
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/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

weight = (Nag_Weightstype) nag_enum_name_to_value(nag_enum_arg);
if (n >= nx+ng && m >= nx)

{
if (!(x = NAG_ALLOC(n*m, double)) ||

!(wt = NAG_ALLOC(n, double)) ||
!(ing = NAG_ALLOC(n, Integer)) ||
!(e = NAG_ALLOC((MIN(nx, ng-1))*6, double)) ||
!(cvm = NAG_ALLOC(ng*nx, double)) ||
!(cvx = NAG_ALLOC(nx*(ng-1), double)) ||
!(nig = NAG_ALLOC(ng, Integer)) ||
!(isx = NAG_ALLOC(m, Integer))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdx = m;
tde = 6;
tdcvm = nx;
tdcvx = ng-1;

}
else

{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;

}
if (weight == Nag_Weightsfreq || weight == Nag_Weightsvar)

{
for (i = 0; i < n; ++i)

{
for (j = 0; j < m; ++j)

scanf("%lf", &X(i, j));
scanf("%lf", &wt[i]);
scanf("%ld", &ing[i]);

}
}

else
{

for (i = 0; i < n; ++i)
{

for (j = 0; j < m; ++j)
scanf("%lf", &X(i, j));

scanf("%ld", &ing[i]);
}

}
for (j = 0; j < m; ++j)

scanf("%ld", &isx[j]);

tol = 1e-6;
/* nag_mv_canon_var (g03acc).
* Canonical variate analysis
*/

nag_mv_canon_var(weight, n, m, x, tdx, isx, nx, ing, ng, wt, nig,
cvm, tdcvm, e, tde, &ncv, cvx, tdcvx, tol, &irx, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_mv_canon_var (g03acc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%s%2ld\n\n", "Rank of x = ", irx);
printf("Canonical Eigenvalues Percentage CHISQ"
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" DF SIG \n");
printf("Correlations Variation\n");
for (i = 0; i < ncv; ++i)

{
for (j = 0; j < 6; ++j)

printf("%12.4f", E(i, j));
printf("\n");

}
printf("\nCanonical Coefficients for X\n");
for (i = 0; i < nx; ++i)

{
for (j = 0; j < ncv; ++j)

printf("%9.4f", CVX(i, j));
printf("\n");

}
printf("\nCanonical variate means\n");
for (i = 0; i < ng; ++i)

{
for (j = 0; j < ncv; ++j)

printf("%9.4f", CVM(i, j));
printf("\n");

}

END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(ing);
NAG_FREE(e);
NAG_FREE(cvm);
NAG_FREE(cvx);
NAG_FREE(nig);
NAG_FREE(isx);

return exit_status;
}

10.2 Program Data

nag_mv_canon_var (g03acc) Example Program Data
9 3 3 3 Nag_NoWeights
13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.0 1
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1
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10.3 Program Results

nag_mv_canon_var (g03acc) Example Program Results

Rank of x = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation

0.8826 3.5238 0.9795 7.9032 6.0000 0.2453
0.2623 0.0739 0.0205 0.3564 2.0000 0.8368

Canonical Coefficients for X
-1.7070 0.7277
-1.3481 0.3138
0.9327 1.2199

Canonical variate means
0.9841 0.2797
1.1805 -0.2632

-2.1646 -0.0164
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