
NAG Library Function Document

nag_mv_canon_var (g03acc)

1 Purpose

nag_mv_canon_var (g03acc) performs a canonical variate (canonical discrimination) analysis.

2 Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_canon_var (Nag_Weightstype weight, Integer n, Integer m,
const double x[], Integer tdx, const Integer isx[], Integer nx,
const Integer ing[], Integer ng, const double wt[], Integer nig[],
double cvm[], Integer tdcvm, double e[], Integer tde, Integer *ncv,
double cvx[], Integer tdcvx, double tol, Integer *irankx,
NagError *fail)

3 Description

Let a sample of n observations on nx variables in a data matrix come from ng groups with
n1; n2; . . . ; nng observations in each group,

P
ni ¼ n. Canonical variate analysis finds the linear

combination of the nx variables that maximizes the ratio of between-group to within-group variation.
The variables formed, the canonical variates can then be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within-group sums of squares and
cross-products matrix. However, nag_mv_canon_var (g03acc) calculates the canonical variates by means
of a singular value decomposition (SVD) of a matrix V . Let the data matrix with variable (column)
means subtracted be X, and let its rank be k; then the k by ng � 1

� �
matrix V is given by:

V ¼ QT
XQg; where Qg is an n by ng � 1

� �
orthogonal matrix that defines the groups and QX is the first

k rows of the orthogonal matrix Q either from the QR decomposition of X:

X ¼ QR
if X is of full column rank, i.e., k ¼ nx, else from the SVD of X:

X ¼ QDPT:

Let the SVD of V be:

V ¼ Ux�UT
g

then the nonzero elements of the diagonal matrix �, �i, for i ¼ 1; 2; . . . ; l, are the l canonical correlations
associated with the l canonical variates, where l ¼ min k; ng

� �
.

The eigenvalues, �2
i , of the within-group sums of squares matrix are given by:

�2
i ¼

�2
i

1� �2
i

:

and the value of �i ¼ �2
i =
P
�2
i gives the proportion of variation explained by the ith canonical variate.

The values of the �i’s give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the �2 statistic:

n� 1� ng �
1

2
k� ng
� �� �Xl

j¼iþ1

log 1þ �2
j

� �

g03 – Multivariate Methods g03acc

Mark 24 g03acc.1

can be used. This is asymptotically distributed as a �2 distribution with k� ið Þ ng � 1� i
� �

degrees of
freedom. If the test for i ¼ h is not significant, then the remaining tests for i > h should be ignored.

The loadings for the canonical variates are calculated from the matrix Ux. This matrix is scaled so that
the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for each
group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each
column and then each row is scaled by an amount

ffiffiffiffiffi
wi
p

, where wi is the weight for the ith observation
(row).

4 References

Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3)
2–25

Kendall M G and Stuart A (1979) The Advanced Theory of Statistics (3 Volumes) (4th Edition) Griffin

5 Arguments

1: weight – Nag_Weightstype Input

On entry: indicates the type of weights to be used in the analysis.

weight ¼ Nag NoWeights
No weights are used.

weight ¼ Nag Weightsfreq
The weights are treated as frequencies and the effective number of observations is the sum
of the weights.

weight ¼ Nag Weightsvar
The weights are treated as being inversely proportional to the variance of the observations
and the effective number of observations is the number of observations with nonzero
weights.

Constraint: weight ¼ Nag NoWeights, Nag Weightsfreq or Nag Weightsvar.

2: n – Integer Input

On entry: the number of observations, n.

Constraint: n � nxþ ng.

3: m – Integer Input

On entry: the total number of variables, m.

Constraint: m � nx.

4: x½n� tdx� – const double Input

On entry: x½ i � 1ð Þ � tdxþ j � 1� must contain the ith observation for the jth variable, for
i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m.

5: tdx – Integer Input

On entry: the stride separating matrix column elements in the array x.

Constraint: tdx � m.

g03acc NAG Library Manual

g03acc.2 Mark 24

6: isx½m� – const Integer Input

On entry: isx½j� 1� indicates whether or not the jth variable is to be included in the analysis.

If isx½j � 1� > 0, then the variable contained in the jth column of x is included in the canonical
variate analysis, for j ¼ 1; 2; . . . ;m.

Constraint: isx½j� 1� > 0 for nx values of j.

7: nx – Integer Input

On entry: the number of variables in the analysis, nx.

Constraint: nx � 1.

8: ing½n� – const Integer Input

On entry: ing½i � 1� indicates which group the ith observation is in, for i ¼ 1; 2; . . . ; n. The
effective number of groups is the number of groups with nonzero membership.

Constraint: 1 � ing½i � 1� � ng, for i ¼ 1; 2; . . . ; n.

9: ng – Integer Input

On entry: the number of groups, ng.

Constraint: ng � 2.

10: wt½n� – const double Input

On entry: if weight ¼ Nag Weightsfreq or Nag Weightsvar then the elements of wt must contain
the weights to be used in the analysis.

If wt½i� 1� ¼ 0:0 then the ith observation is not included in the analysis.

Constraints:

wt½i � 1� � 0:0, for i ¼ 1; 2; . . . ; n;Pn
i¼1wt½i� 1� � nxþ effective number of groups.

Note: if weight ¼ Nag NoWeights then wt is not referenced and may be NULL..

11: nig½ng� – Integer Output

On exit: nig½j � 1� gives the number of observations in group j, for j ¼ 1; 2; . . . ; ng.

12: cvm½ng� tdcvm� – double Output

On exit: cvm½ i � 1ð Þ � tdcvmþ j � 1� contains the mean of the jth canonical variate for the ith
group, for i ¼ 1; 2; . . . ; ng and j ¼ 1; 2; . . . ; l; the remaining columns, if any, are used as
workspace.

13: tdcvm – Integer Input

On entry: the stride separating matrix column elements in the array cvm.

Constraint: tdcvm � nx.

14: e½min nx; ng� 1ð Þ � tde� – double Output

On exit: the statistics of the canonical variate analysis. e½ i � 1ð Þ � tde�, the canonical correlations,
�i, for i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 1�, the eigenvalues of the within-group sum of squares matrix, �2
i , for

i ¼ 1; 2; . . . ; l.

e½ i � 1ð Þ � tdeþ 2�, the proportion of variation explained by the ith canonical variate, for
i ¼ 1; 2; . . . ; l.

g03 – Multivariate Methods g03acc

Mark 24 g03acc.3

e½ i� 1ð Þ � tdeþ 3�, the �2 statistic for the ith canonical variate, for i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 4�, the degrees of freedom for �2 statistic for the ith canonical variate, for
i ¼ 1; 2; . . . ; l.

e½ i� 1ð Þ � tdeþ 5�, the significance level for the �2 statistic for the ith canonical variate, for
i ¼ 1; 2; . . . ; l.

15: tde – Integer Input

On entry: the stride separating matrix column elements in the array e.

Constraint: tde � 6.

16: ncv – Integer * Output

On exit: the number of canonical variates, l. This will be the minimum of ng � 1 and the rank of
x.

17: cvx½nx� tdcvx� – double Output

On exit: the canonical variate loadings. cvx½ i � 1ð Þ � tdcvxþ j � 1� contains the loading
coefficient for the ith variable on the jth canonical variate, for i ¼ 1; 2; . . . ; nx and
j ¼ 1; 2; . . . ; l; the remaining columns, if any, are used as workspace.

18: tdcvx – Integer Input

On entry: the stride separating matrix column elements in the array cvx.

Constraint: tdcvx � ng� 1.

19: tol – double Input

On entry: the value of tol is used to decide if the variables are of full rank and, if not, what is the
rank of the variables. The smaller the value of tol the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of tol less than machine precision is
entered, then the square root of machine precision is used instead.

Constraint: tol � 0:0.

20: irankx – Integer * Output

On exit: the rank of the dependent variables.

If the variables are of full rank then irankx ¼ nx.

If the variables are not of full rank then irankx is an estimate of the rank of the dependent
variables. irankx is calculated as the number of singular values greater than tol�(largest singular
value).

21: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_INT_ARG_LT

On entry, m ¼ valueh i while nx ¼ valueh i. These arguments must satisfy m � nx.

On entry, tdcvm ¼ valueh i while nx ¼ valueh i. These arguments must satisfy tdcvm � nx.

On entry, tdcvx ¼ valueh i while ng ¼ valueh i. These arguments must satisfy tdcvx � ng� 1.

On entry, tdx ¼ valueh i while m ¼ valueh i. These arguments must satisfy tdx � m.

g03acc NAG Library Manual

g03acc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_3_INT_ARG_CONS

On entry, n ¼ valueh i, nx ¼ valueh i and ng ¼ valueh i. These arguments must satisfy n � nxþ ng.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument weight had an illegal value.

NE_CANON_CORR_1

A canonical correlation is equal to one. This will happen if the variables provide an exact
indication as to which group every observation is allocated.

NE_GROUPS

Either the effective number of groups is less than two or the effective number of groups plus the
number of variables, nx is greater than the effective number of observations.

NE_INT_ARG_LT

On entry, ng ¼ valueh i.
Constraint: ng � 2.

On entry, nx ¼ valueh i.
Constraint: nx � 1.

On entry, tde ¼ valueh i.
Constraint: tde � 6.

NE_INTARR_INT

On entry, ing½ valueh i� ¼ valueh i, ng ¼ valueh i. Constraint: 1 � ing½i � 1� � ng, for
i ¼ 1; 2; . . . ; n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEG_WEIGHT_ELEMENT

On entry, wt½ valueh i� ¼ valueh i.
Constraint: When referenced, all elements of wt must be non-negative.

NE_RANK_ZERO

The rank of the variables is zero. This will happen if all the variables are constants.

NE_REAL_ARG_LT

On entry, tol must not be less than 0:0: tol ¼ valueh i.

NE_SVD_NOT_CONV

The singular value decomposition has failed to converge. This is an unlikely error exit.

NE_VAR_INCL_INDICATED

The number of variables, nx in the analysis ¼ valueh i, while number of variables included in the
analysis via array isx ¼ valueh i.
Constraint: these two numbers must be the same.

g03 – Multivariate Methods g03acc

Mark 24 g03acc.5

NE_WT_ARGS

The wt array argument must not be NULL when the weight argument indicates weights.

7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather
than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition,
nag_mv_canon_var (g03acc) should be less affected by ill conditioned problems.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

A sample of nine observations, each consisting of three variables plus group indicator, is read in. There
are three groups. An unweighted canonical variate analysis is performed and the results printed.

10.1 Program Text

/* nag_mv_canon_var (g03acc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define X(I, J) x[(I) *tdx + J]
#define E(I, J) e[(I) *tde + J]
#define CVM(I, J) cvm[(I) *tdcvm + J]
#define CVX(I, J) cvx[(I) *tdcvx + J]
int main(void)
{

Integer exit_status = 0, i, irx, j, m, n, ncv, ng;
Integer nx, tdcvm, tdcvx, tde, tdx;
Integer *ing = 0, *isx = 0, *nig = 0;
double *cvm = 0, *cvx = 0, *e = 0, tol, *wt = 0, *x = 0;
char nag_enum_arg[40];
Nag_Weightstype weight;
NagError fail;

INIT_FAIL(fail);

printf("nag_mv_canon_var (g03acc) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%ld", &n);
scanf("%ld", &m);
scanf("%ld", &nx);
scanf("%ld", &ng);
scanf("%39s", nag_enum_arg);

g03acc NAG Library Manual

g03acc.6 Mark 24

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

weight = (Nag_Weightstype) nag_enum_name_to_value(nag_enum_arg);
if (n >= nx+ng && m >= nx)

{
if (!(x = NAG_ALLOC(n*m, double)) ||

!(wt = NAG_ALLOC(n, double)) ||
!(ing = NAG_ALLOC(n, Integer)) ||
!(e = NAG_ALLOC((MIN(nx, ng-1))*6, double)) ||
!(cvm = NAG_ALLOC(ng*nx, double)) ||
!(cvx = NAG_ALLOC(nx*(ng-1), double)) ||
!(nig = NAG_ALLOC(ng, Integer)) ||
!(isx = NAG_ALLOC(m, Integer))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdx = m;
tde = 6;
tdcvm = nx;
tdcvx = ng-1;

}
else

{
printf("Invalid n or m.\n");
exit_status = 1;
return exit_status;

}
if (weight == Nag_Weightsfreq || weight == Nag_Weightsvar)

{
for (i = 0; i < n; ++i)

{
for (j = 0; j < m; ++j)

scanf("%lf", &X(i, j));
scanf("%lf", &wt[i]);
scanf("%ld", &ing[i]);

}
}

else
{

for (i = 0; i < n; ++i)
{

for (j = 0; j < m; ++j)
scanf("%lf", &X(i, j));

scanf("%ld", &ing[i]);
}

}
for (j = 0; j < m; ++j)

scanf("%ld", &isx[j]);

tol = 1e-6;
/* nag_mv_canon_var (g03acc).
* Canonical variate analysis
*/

nag_mv_canon_var(weight, n, m, x, tdx, isx, nx, ing, ng, wt, nig,
cvm, tdcvm, e, tde, &ncv, cvx, tdcvx, tol, &irx, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_mv_canon_var (g03acc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%s%2ld\n\n", "Rank of x = ", irx);
printf("Canonical Eigenvalues Percentage CHISQ"

g03 – Multivariate Methods g03acc

Mark 24 g03acc.7

" DF SIG \n");
printf("Correlations Variation\n");
for (i = 0; i < ncv; ++i)

{
for (j = 0; j < 6; ++j)

printf("%12.4f", E(i, j));
printf("\n");

}
printf("\nCanonical Coefficients for X\n");
for (i = 0; i < nx; ++i)

{
for (j = 0; j < ncv; ++j)

printf("%9.4f", CVX(i, j));
printf("\n");

}
printf("\nCanonical variate means\n");
for (i = 0; i < ng; ++i)

{
for (j = 0; j < ncv; ++j)

printf("%9.4f", CVM(i, j));
printf("\n");

}

END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(ing);
NAG_FREE(e);
NAG_FREE(cvm);
NAG_FREE(cvx);
NAG_FREE(nig);
NAG_FREE(isx);

return exit_status;
}

10.2 Program Data

nag_mv_canon_var (g03acc) Example Program Data
9 3 3 3 Nag_NoWeights
13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.0 1
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1

g03acc NAG Library Manual

g03acc.8 Mark 24

10.3 Program Results

nag_mv_canon_var (g03acc) Example Program Results

Rank of x = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation

0.8826 3.5238 0.9795 7.9032 6.0000 0.2453
0.2623 0.0739 0.0205 0.3564 2.0000 0.8368

Canonical Coefficients for X
-1.7070 0.7277
-1.3481 0.3138
0.9327 1.2199

Canonical variate means
0.9841 0.2797
1.1805 -0.2632

-2.1646 -0.0164

g03 – Multivariate Methods g03acc

Mark 24 g03acc.9 (last)

	g03acc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Chatfield and Collins (1980)
	Gnanadesikan (1977)
	Hammarling (1985)
	Kendall and Stuart (1979)

	5 Arguments
	weight
	n
	m
	x
	tdx
	isx
	nx
	ing
	ng
	wt
	nig
	cvm
	tdcvm
	e
	tde
	ncv
	cvx
	tdcvx
	tol
	irankx
	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_LT
	NE_3_INT_ARG_CONS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CANON_CORR_1
	NE_GROUPS
	NE_INT_ARG_LT
	NE_INTARR_INT
	NE_INTERNAL_ERROR
	NE_NEG_WEIGHT_ELEMENT
	NE_RANK_ZERO
	NE_REAL_ARG_LT
	NE_SVD_NOT_CONV
	NE_VAR_INCL_INDICATED
	NE_WT_ARGS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

