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1 Scope of the Chapter

This chapter is concerned with two techniques – correlation analysis and regression modelling – both of
which are concerned with determining the inter-relationships among two or more variables.

Other chapters of the NAG C Library which cover similar problems are Chapters e02 and e04. Chapter
e02 functions may be used to fit linear models by criteria other than least squares, and also for
polynomial regression; Chapter e04 functions may be used to fit nonlinear models and linearly
constrained linear models.

2 Background to the Problems

2.1 Correlation

2.1.1 Aims of correlation analysis

Correlation analysis provides a single summary statistic – the correlation coefficient – describing the
strength of the association between two variables. The most common types of association which are
investigated by correlation analysis are linear relationships, and there are a number of forms of linear
correlation coefficients for use with different types of data.

2.1.2 Correlation coefficients

The (Pearson) product-moment correlation coefficients measure a linear relationship, while Kendall’s tau
and Spearman’s rank order correlation coefficients measure monotonicity only. All three coefficients
range from �1:0 to þ1:0. A coefficient of zero always indicates that no linear relationship exists; a þ1:0
coefficient implies a ‘perfect’ positive relationship (i.e., an increase in one variable is always associated
with a corresponding increase in the other variable); and a coefficient of �1:0 indicates a ‘perfect’
negative relationship (i.e., an increase in one variable is always associated with a corresponding decrease
in the other variable).

Consider the bivariate scattergrams in Figure 1: (a) and (b) show strictly linear functions for which the
values of the product-moment correlation coefficient, and (since a linear function is also monotonic) both
Kendall’s tau and Spearman’s rank order coefficients, would be þ1:0 and �1:0 respectively. However,
though the relationships in figures (c) and (d) are respectively monotonically increasing and
monotonically decreasing, for which both Kendall’s and Spearman’s nonparametric coefficients would
be þ1:0 (in (c)) and �1:0 (in (d)), the functions are nonlinear so that the product-moment coefficients
would not take such ‘perfect’ extreme values. There is no obvious relationship between the variables in
figure (e), so all three coefficients would assume values close to zero, while in figure (f) though there is
an obvious parabolic relationship between the two variables, it would not be detected by any of the
correlation coefficients which would again take values near to zero; it is important therefore to examine
scattergrams as well as the correlation coefficients.

In order to decide which type of correlation is the most appropriate, it is necessary to appreciate the
different groups into which variables may be classified. Variables are generally divided into four types of
scales: the nominal scale, the ordinal scale, the interval scale, and the ratio scale. The nominal scale is
used only to categorise data; for each category a name, perhaps numeric, is assigned so that two different
categories will be identified by distinct names. The ordinal scale, as well as categorising the
observations, orders the categories. Each category is assigned a distinct identifying symbol, in such a
way that the order of the symbols corresponds to the order of the categories. (The most common system
for ordinal variables is to assign numerical identifiers to the categories, though if they have previously
been assigned alphabetic characters, these may be transformed to a numerical system by any convenient
method which preserves the ordering of the categories.) The interval scale not only categorises and
orders the observations, but also quantifies the comparison between categories; this necessitates a
common unit of measurement and an arbitrary zero-point. Finally, the ratio scale is similar to the interval
scale, except that it has an absolute (as opposed to arbitrary) zero-point.

For a more complete discussion of these four types of scales, and some examples, you are referred to
Churchman and Ratoosh (1959) and Hays (1970).
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Figure 1

Product-moment correlation coefficients are used with variables which are interval (or ratio) scales; these
coefficients measure the amount of spread about the linear least squares equation. For a product-moment
correlation coefficient, r, based on n pairs of observations, testing against the null hypothesis that there
is no correlation between the two variables, the statistic
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r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r
has a Student’s t-distribution with n� 2 degrees of freedom; its significance can be tested accordingly.

Ranked and ordinal scale data are generally analysed by nonparametric methods – usually either
Spearman’s or Kendall’s tau rank order correlation coefficients, which, as their names suggest, operate
solely on the ranks, or relative orders, of the data values. Interval or ratio scale variables may also be
validly analysed by nonparametric methods, but such techniques are statistically less powerful than a
product-moment method. For a Spearman rank order correlation coefficient, R, based on n pairs of
observations, testing against the null hypothesis that there is no correlation between the two variables,
for large samples the statistic

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1�R2

r
has approximately a Student’s t-distribution with n� 2 degrees of freedom, and may be treated
accordingly. (This is similar to the product-moment correlation coefficient, r, see above.) Kendall’s tau
coefficient, based on n pairs of observations, has, for large samples, an approximately Normal
distribution with mean zero and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nþ 10

9n n� 1ð Þ

s
when tested against the null hypothesis that there is no correlation between the two variables; the
coefficient should therefore be divided by this standard deviation and tested against the standard Normal
distribution, N 0; 1ð Þ.
When the number of ordinal categories a variable takes is large, and the number of ties is relatively
small, Spearman’s rank order correlation coefficients have advantages over Kendall’s tau; conversely,
when the number of categories is small, or there are a large number of ties, Kendall’s tau is usually
preferred. Thus when the ordinal scale is more or less continuous, Spearman’s rank order coefficients are
preferred, whereas Kendall’s tau is used when the data is grouped into a smaller number of categories;
both measures do however include corrections for the occurrence of ties, and the basic concepts
underlying the two coefficients are quite similar. The absolute value of Kendall’s tau coefficient tends to
be slightly smaller than Spearman’s coefficient for the same set of data.

There is no authoritative dictum on the selection of correlation coefficients – particularly on the
advisability of using correlations with ordinal data. This is a matter of discretion for you.

2.1.3 Partial correlation

The correlation coefficients described above measure the association between two variables ignoring any
other variables in the system. Suppose there are three variables X; Y and Z as shown in the path
diagram below.

X

Z Y

The association between Y and Z is made up of the direct association between Y and Z and the
association caused by the path through X, that is the association of both Y and Z with the third variable
X. For example if Z and Y were cholesterol level and blood pressure and X were age since both blood
pressure and cholesterol level may increase with age the correlation between blood pressure and
cholesterol level eliminating the effect of age is required.
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The correlation between two variables eliminating the effect of a third variable is known as the partial
correlation. If �zy, �zx and �xy represent the correlations between x, y and z then the partial correlation
between Z and Y given X is

�zy � �zx�xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

zx

� �
1� �2

xy

� �r :

The partial correlation is then estimated by using product-moment correlation coefficients.

In general, let a set of variables be partitioned into two groups Y and X with ny variables in Y and nx
variables in X and let the variance-covariance matrix of all ny þ nx variables be partitioned into

�xx �yx

�xy �yy

� �
:

Then the variance-covariance of Y conditional on fixed values of the X variables is given by

�yjx ¼ �yy ��yx�
�1
xx�xy:

The partial correlation matrix is then computed by standardizing �yjx.

2.1.4 Robust estimation of correlation coefficients

The product-moment correlation coefficient can be greatly affected by the presence of a few extreme
observations or outliers. There are robust estimation procedures which aim to decrease the effect of
extreme values.

Mathematically these methods can be described as follows. A robust estimate of the variance-covariance
matrix, C, can be written as

C ¼ �2 ATA
� ��1

where �2 is a correction factor to give an unbiased estimator if the data is Normal and A is a lower
triangular matrix. Let xi be the vector of values for the ith observation and let zi ¼ A xi � �ð Þ, � being a
robust estimate of location, then � and A are found as solutions to

1

n

Xn
i¼1

w zik k2

� �
zi ¼ 0

and

1

n

Xn
i¼1

w zik k2

� �
ziz

T
i � v zik k2

� �
I ¼ 0;

where w tð Þ, u tð Þ and v tð Þ are functions such that they return a value of 1 for reasonable values of t and
decreasing values for large t. The correlation matrix can then be calculated from the variance-covariance
matrix. If w, u, and v returned 1 for all values then the product-moment correlation coefficient would be
calculated.

2.1.5 Missing values

When there are missing values in the data these may be handled in one of two ways. Firstly, if a case
contains a missing observation for any variable, then that case is omitted in its entirety from all
calculations; this may be termed casewise treatment of missing data. Secondly, if a case contains a
missing observation for any variable, then the case is omitted from only those calculations involving the
variable for which the value is missing; this may be called pairwise treatment of missing data. Pairwise
deletion of missing data has the advantage of using as much of the data as possible in the computation of
each coefficient. In extreme circumstances, however, it can have the disadvantage of producing
coefficients which are based on a different number of cases, and even on different selections of cases or
samples; furthermore, the ‘correlation’ matrices formed in this way need not necessarily be positive
semidefinite, a requirement for a correlation matrix. Casewise deletion of missing data generally causes
fewer cases to be used in the calculation of the coefficients than does pairwise deletion. How great this
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difference is will obviously depend on the distribution of the missing data, both among cases and among
variables.

Pairwise treatment does therefore use more information from the sample, but should not be used without
careful consideration of the location of the missing observations in the data matrix, and the consequent
effect of processing the missing data in that fashion.

2.1.6 Nearest Correlation Matrix

A correlation matrix is, by definition, a symmetric, positive semidefinite matrix with unit diagonals and
all elements in the range �1; 1½ �.
In practice, rather than having a true correlation matrix, you may find that you have a matrix of pairwise
correlations. This usually occurs in the presence of missing values, when the missing values are treated
in a pairwise fashion as discussed in Section 2.1.5. Matrices constructed in this way may not be not
positive semidefinite, and therefore are not a valid correlation matrix. However, a valid correlation
matrix can be calculated that is in some sense ‘close’ to the original.

Given an n� n matrix, G, there are a number of available ways of computing the ‘nearest’ correlation
matrix, � to G:

(a) Frobenius Norm

Find � such that Xn
i¼1

Xn
j¼1

sij � �ij
� �2

is minimized.

Where S is the symmetric matrix defined as S ¼ 1
2 GþGTð Þ and sij and �ij denotes the elements of

S and � respectively.

A weighted Frobenius norm can also be used. The term being summed across therefore becomes

wiwj sij � �ij
� �2

if row and column weights are being used or wij sij � �ij
� �2

when element-wise
weights are used.

(b) Factor Loading Method

This method is similar to (a) in that it finds a � that is closest to S in the Frobenius norm. However,
it also ensures that � has a k-factor structure, that is � can be written as

� ¼ XXT þ diag I �XXT
� �

where I is the identity matrix and X has n rows and k columns.

X is often referred to as the factor loading matrix. This problem primarily arises when a factor
model � ¼ X� þD	 is used to describe a multivariate time series or collateralized debt obligations.
In this model � 2 R

k and � 2 R
n are vectors of independent random variables having zero mean and

unit variance, with � and 	 independent of each other, and X 2 R
n�k with D 2 R

n�n diagonal. In
the case of modelling debt obligations � can, for example, model the equity returns of n different
companies of a portfolio where � describes k factors influencing all companies, in contrast to the
elements of 	 having only an effect on the equity of the corresponding company. With this model
the complex behaviour of a portfolio, with potentially thousands of equities, is captured by looking
at the major factors driving the behaviour.

The number of factors usually chosen is a lot smaller than n, perhaps between 1 and 10, yielding a
large reduction in the complexity. The number of the factors, k, which yields a matrix X such that
G�XXT þ diag I �XXTð Þk kF is within a required tolerance can also be determined, by

experimenting with the input k and comparing the norms.
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2.2 Regression

2.2.1 Aims of regression modelling

In regression analysis the relationship between one specific random variable, the dependent or response
variable, and one or more known variables, called the independent variables or covariates, is studied.
This relationship is represented by a mathematical model, or an equation, which associates the dependent
variable with the independent variables, together with a set of relevant assumptions. The independent
variables are related to the dependent variable by a function, called the regression function, which
involves a set of unknown parameters. Values of the parameters which give the best fit for a given set
of data are obtained; these values are known as the estimates of the parameters.

The reasons for using a regression model are twofold. The first is to obtain a description of the
relationship between the variables as an indicator of possible causality. The second reason is to predict
the value of the dependent variable from a set of values of the independent variables. Accordingly, the
most usual statistical problems involved in regression analysis are:

(i) to obtain best estimates of the unknown regression parameters;

(ii) to test hypotheses about these parameters;

(iii) to determine the adequacy of the assumed model; and

(iv) to verify the set of relevant assumptions.

2.2.2 Regression models and designed experiments

One application of regression models is in the analysis of experiments. In this case the model relates the
dependent variable to qualitative independent variables known as factors. Factors may take a number of
different values known as levels. For example, in an experiment in which one of four different treatments
is applied, the model will have one factor with four levels. Each level of the factor can be represented by
a dummy variable taking the values 0 or 1. So in the example there are four dummy variables xj, for
j ¼ 1; 2; 3; 4, such that:

xij ¼ 1 if the ith observation received the jth treatment
¼ 0 otherwise;

along with a variable for the mean x0:

xi0 ¼ 1 for all i:

If there were 7 observations the data would be:

Treatment Y x0 x1 x2 x3 x4

1 y1 1 1 0 0 0
2 y2 1 0 1 0 0
2 y3 1 0 1 0 0
3 y4 1 0 0 1 0
3 y5 1 0 0 1 0
4 y6 1 0 0 0 1
4 y7 1 0 0 0 1

When dummy variables are used it is common for the model not to be of full rank. In the case above, the
model would not be of full rank because

xi4 ¼ xi0 � xi1 � xi2 � xi3; i ¼ 1; 2; . . . ; 7:

This means that the effect of x4 cannot be distinguished from the combined effect of x0; x1; x2 and x3.
This is known as aliasing. In this situation, the aliasing can be deduced from the experimental design
and as a result the model to be fitted; in such situations it is known as intrinsic aliasing. In the example
above no matter how many times each treatment is replicated (other than 0) the aliasing will still be
present. If the aliasing is due to a particular dataset to which the model is to be fitted then it is known as
extrinsic aliasing. If in the example above observation 1 was missing then the x1 term would also be
aliased. In general intrinsic aliasing may be overcome by changing the model, e.g., remove x0 or x1 from
the model, or by introducing constraints on the parameters, e.g., 
1 þ 
2 þ 
3 þ 
4 ¼ 0.
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If aliasing is present then there will no longer be a unique set of least squares estimates for the
parameters of the model but the fitted values will still have a unique estimate. Some linear functions of
the parameters will also have unique estimates; these are known as estimable functions. In the example
given above the functions (
0 þ 
1) and (
2 � 
3) are both estimable.

2.2.3 Selecting the regression model

In many situations there are several possible independent variables, not all of which may be needed in
the model. In order to select a suitable set of independent variables, two basic approaches can be used.

(a) All possible regressions

In this case all the possible combinations of independent variables are fitted and the one considered
the best selected. To choose the best, two conflicting criteria have to be balanced. One is the fit of
the model which will improve as more variables are added to the model. The second criterion is the
desire to have a model with a small number of significant terms. Depending on how the model is fit,
statistics such as R2, which gives the proportion of variation explained by the model, and Cp, which
tries to balance the size of the residual sum of squares against the number of terms in the model, can
be used to aid in the choice of model.

(b) Stepwise model building

In stepwise model building the regression model is constructed recursively, adding or deleting the
independent variables one at a time. When the model is built up the procedure is known as forward
selection. The first step is to choose the single variable which is the best predictor. The second
independent variable to be added to the regression equation is that which provides the best fit in
conjunction with the first variable. Further variables are then added in this recursive fashion, adding
at each step the optimum variable, given the other variables already in the equation. Alternatively,
backward elimination can be used. This is when all variables are added and then the variables
dropped one at a time, the variable dropped being the one which has the least effect on the fit of the
model at that stage. There are also hybrid techniques which combine forward selection with
backward elimination.

2.3 Linear Regression Models

When the regression model is linear in the parameters (but not necessarily in the independent variables),
then the regression model is said to be linear; otherwise the model is classified as nonlinear.

The most elementary form of regression model is the simple linear regression of the dependent variable,
Y , on a single independent variable, x, which takes the form

E Yð Þ ¼ 
0 þ 
1x ð1Þ

where E Yð Þ is the expected or average value of Y and 
0 and 
1 are the parameters whose values are to
be estimated, or, if the regression is required to pass through the origin (i.e., no constant term),

E Yð Þ ¼ 
1x ð2Þ

where 
1 is the only unknown parameter.

An extension of this is multiple linear regression in which the dependent variable, Y , is regressed on
the p (p > 1) independent variables, x1; x2; . . . ; xp, which takes the form

E Yð Þ ¼ 
0 þ 
1x1 þ 
2x2 þ � � � þ 
pxp ð3Þ

where 
1; 
2; . . . ; 
p and 
0 are the unknown parameters. Multiple linear regression models test include
factors are sometimes known as General Linear (Regression) Models.

A special case of multiple linear regression is polynomial linear regression, in which the p independent
variables are in fact powers of the same single variable x (i.e., xj ¼ xj, for j ¼ 1; 2; . . . ; p).

In this case, the model defined by (3) becomes

E Yð Þ ¼ 
0 þ 
1xþ 
2x
2 þ � � � þ 
pxp: ð4Þ

There are a great variety of nonlinear regression models; one of the most common is exponential
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regression, in which the equation may take the form

E Yð Þ ¼ aþ becx: ð5Þ

It should be noted that equation (4) represents a linear regression, since even though the equation is not
linear in the independent variable, x, it is linear in the parameters 
0; 
1; 
2; . . . :; 
p, whereas the
regression model of equation (5) is nonlinear, as it is nonlinear in the parameters (a, b and c).

2.3.1 Fitting the regression model – least squares estimation

One method used to determine values for the parameters is, based on a given set of data, to minimize the
sums of squares of the differences between the observed values of the dependent variable and the values
predicted by the regression equation for that set of data – hence the term least squares estimation. For
example, if a regression model of the type given by equation (3), namely

E Yð Þ ¼ 
0x0 þ 
1x1 þ 
2x2 þ � � � þ 
pxp;

where x0 ¼ 1 for all observations, is to be fitted to the n data points

x01; x11; x21; . . . ; xp1; y1

� �
x02; x12; x22; . . . ; xp2; y2

� �
..
.

x0n; x1n; x2n; . . . ; xpn; yn
� � ð6Þ

such that

yi ¼ 
0x0 þ 
1x1i þ 
2x2i þ � � � þ 
pxpi þ ei; i ¼ 1; 2; . . . ; n

where ei are unknown independent random errors with E eið Þ ¼ 0 and var eið Þ ¼ �2, �2 being a constant,
then the method used is to calculate the estimates of the regression parameters 
0; 
1; 
2; . . . ; 
p by
minimizing Xn

i¼1

e2
i : ð7Þ

If the errors do not have constant variance, i.e.,

var eið Þ ¼ �2
i ¼

�2

wi

then weighted least squares estimation is used in whichXn
i¼1

wie
2
i

is minimized. For a more complete discussion of these least squares regression methods, and details of
the mathematical techniques used, see Draper and Smith (1985) or Kendall and Stuart (1973).

2.3.2 Computational methods for least squares regression

Let X be the n by p matrix of independent variables and y be the vector of values for the dependent

variable. To find the least squares estimates of the vector of parameters, 
̂, the QR decomposition of X
is found, i.e.,

X ¼ QR�

where R� ¼ R
0

	 

, R being a p by p upper triangular matrix, and Q an n by n orthogonal matrix. If R

is of full rank then 
̂ is the solution to

R
̂ ¼ c1

where c ¼ QTy and c1 is the first p rows of c. If R is not of full rank, a solution is obtained by means of
a singular value decomposition (SVD) of R,
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R ¼ Q� D 0
0 0

	 

PT;

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q� and
P are p by p orthogonal matrices. This gives the solution


̂ ¼ P1D
�1QT

�1
c1;

P1 being the first k columns of P and Q�1 being the first k columns of Q�.

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the parameters. If weighted regression with a vector of weights w is required then both X and y are
premultiplied by w1=2.

The method described above will, in general, be more accurate than methods based on forming (XTX),
(or a scaled version), and then solving the equations

XTX
� �


̂ ¼ XTy:

2.3.3 Examining the fit of the model

Having fitted a model two questions need to be asked: first, ‘are all the terms in the model needed?’ and
second, ‘is there some systematic lack of fit?’. To answer the first question either confidence intervals
can be computed for the parameters or t-tests can be calculated to test hypotheses about the regression
parameters – for example, whether the value of the parameter, 
k, is significantly different from a

specified value, bk (often zero). If the estimate of 
k is 
̂k and its standard error is se 
̂k

� �
then the

t-statistic is


̂k � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se 
̂k

� �r :

It should be noted that both the tests and the confidence intervals may not be independent. Alternatively
F -tests based on the residual sums of squares for different models can also be used to test the
significance of terms in the model. If model 1, giving residual sum of squares RSS1 with degrees of
freedom �1, is a sub-model of model 2, giving residual sum of squares RSS2 with degrees of freedom �2,
i.e., all terms in model 1 are also in model 2, then to test if the extra terms in model 2 are needed the
F -statistic

F ¼ RSS1 � RSS2ð Þ= �1 � �2ð Þ
RSS2=�2

may be used. These tests and confidence intervals require the additional assumption that the errors, ei,
are Normally distributed.

To check for systematic lack of fit the residuals, ri ¼ yi � ŷi, where ŷi is the fitted value, should be
examined. If the model is correct then they should be random with no discernible pattern. Due to the
way they are calculated the residuals do not have constant variance. Now the vector of fitted values can
be written as a linear combination of the vector of observations of the dependent variable, y, ŷ ¼ Hy.
The variance-covariance matrix of the residuals is then I �Hð Þ�2, I being the identity matrix. The
diagonal elements of H, hii, can therefore be used to standardize the residuals. The hii are a measure of
the effect of the ith observation on the fitted model and are sometimes known as leverages.

If the observations were taken serially the residuals may also be used to test the assumption of the
independence of the ei and hence the independence of the observations.

2.3.4 Ridge regression

When data on predictor variables x are multicollinear, ridge regression models provide an alternative to
variable selection in the multiple regression model. In the ridge regression case, parameter estimates in
the linear model are found by penalised least squares:
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Xn
i¼1

Xp
j¼1

xij
̂j

 !
� yi

" #2

þ h
Xp
j¼1


̂2
j ; h 2 R

þ;

where the value of the ridge parameter h controls the trade-off between the goodness-of-fit and
smoothness of a solution.

2.4 Robust Estimation

Least squares regression can be greatly affected by a small number of unusual, atypical, or extreme
observations. To protect against such occurrences, robust regression methods have been developed.
These methods aim to give less weight to an observation which seems to be out of line with the rest of
the data given the model under consideration. That is to seek to bound the influence. For a discussion of
influence in regression, see Hampel et al. (1986) and Huber (1981).

There are two ways in which an observation for a regression model can be considered atypical. The
values of the independent variables for the observation may be atypical or the residual from the model
may be large.

The first problem of atypical values of the independent variables can be tackled by calculating weights
for each observation which reflect how atypical it is, i.e., a strongly atypical observation would have a
low weight. There are several ways of finding suitable weights; some are discussed in Hampel et al.
(1986).

The second problem is tackled by bounding the contribution of the individual ei to the criterion to be
minimized. When minimizing (7) a set of linear equations is formed, the solution of which gives the
least squares estimates. The equations areXn

i¼1

eixij ¼ 0; j ¼ 0; 1; . . . ; k:

These equations are replaced by Xn
i¼1

 ei=�ð Þxij ¼ 0; j ¼ 0; 1; . . . ; k; ð8Þ

where �2 is the variance of the ei, and  is a suitable function which down weights large values of the
standardized residuals ei=�. There are several suggested forms for  , one of which is Huber’s function,

 tð Þ ¼
�c; t < c
t; tj j � c
c; t > c

8<: ð9Þ

-c

c
t

ψ (t)

Figure 3

The solution to (8) gives the M-estimates of the regression coefficients. The weights can be included in
(8) to protect against both types of extreme value. The parameter � can be estimated by the median
absolute deviations of the residuals or as a solution to, in the unweighted case,Xn

i¼1

� ei=�̂ð Þ ¼ n� kð Þ
;

where � is a suitable function and 
 is a constant chosen to make the estimate unbiased. � is often
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chosen to be  2=2 where  is given in (9). Another form of robust regression is to minimize the sum of
absolute deviations, i.e., Xn

i¼1

eij j:

For details of robust regression, see Hampel et al. (1986) and Huber (1981).

Robust regressions using least absolute deviations can be computed using functions in Chapter e02.

2.5 Generalized Linear Models

Generalized linear models are an extension of the general linear regression model discussed above. They
allow a wide range of models to be fitted. These included certain nonlinear regression models, logistic
and probit regression models for binary data, and log-linear models for contingency tables. A generalized
linear model consists of three basic components:

(a) A suitable distribution for the dependent variable Y . The following distributions are common:

(i) Normal

(ii) binomial

(iii) Poisson

(iv) gamma

In addition to the obvious uses of models with these distributions it should be noted that the Poisson
distribution can be used in the analysis of contingency tables while the gamma distribution can be
used to model variance components. The effect of the choice of the distribution is to define the
relationship between the expected value of Y , E Yð Þ ¼ , and its variance and so a generalized
linear model with one of the above distributions may be used in a wider context when that
relationship holds.

(b) A linear model � ¼
P

jxj, � is known as a linear predictor.

(c) A link function g �ð Þ between the expected value of Y and the linear predictor, g ð Þ ¼ �. The
following link functions are available:

For the binomial distribution 	, observing y out of t:

(i) logistic link: � ¼ log 
t�

� �
;

(ii) probit link: � ¼ ��1 
t

� �
;

(iii) complementary log-log: � ¼ log �log 1� 
t

� �� �
.

For the Normal, Poisson, and gamma distributions:

(i) exponent link: � ¼ a, for a constant a;

(ii) identity link: � ¼ ;

(iii) log link: � ¼ log;

(iv) square root link: � ¼ ffiffiffi

p

;

(v) reciprocal link: � ¼ 1
 .

For each distribution there is a canonical link. For the canonical link there exist sufficient statistics
for the parameters. The canonical links are:

(i) Normal – identity;

(ii) binomial – logistic;

(iii) Poisson – logarithmic;
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(iv) gamma – reciprocal.

For the general linear regression model described above the three components are:

(i) Distribution – Normal;

(ii) Linear model –
P

jxj;

(iii) Link – identity.

The model is fitted by maximum likelihood; this is equivalent to least squares in the case of the Normal
distribution. The residual sums of squares used in regression models is generalized to the concept of
deviance. The deviance is the logarithm of the ratio of the likelihood of the model to the full model in
which ̂i ¼ yi, where ̂i is the estimated value of i. For the Normal distribution the deviance is the
residual sum of squares. Except for the case of the Normal distribution with the identity link, the �2 and
F -tests based on the deviance are only approximate; also the estimates of the parameters will only be
approximately Normally distributed. Thus only approximate z- or t-tests may be performed on the
parameter values and approximate confidence intervals computed.

The estimates are found by using an iterative weighted least squares procedure. This is equivalent to the
Fisher scoring method in which the Hessian matrix used in the Newton–Raphson method is replaced by
its expected value. In the case of canonical links the Fisher scoring method and the Newton–Raphson
method are identical. Starting values for the iterative procedure are obtained by replacing the i by yi in
the appropriate equations.

2.6 Linear Mixed Effects Regression

In a standard linear model the independent (or explanatory) variables are assumed to take the same set of
values for all units in the population of interest. This type of variable is called fixed. In contrast, an
independent variable that fluctuates over the different units is said to be random. Modelling a variable as
fixed allows conclusions to be drawn only about the particular set of values observed. Modelling a
variable as random allows the results to be generalized to the different levels that may have been
observed. In general, if the effects of the levels of a variable are thought of as being drawn from a
probability distribution of such effects then the variable is random. If the levels are not a sample of
possible levels then the variable is fixed. In practice many qualitative variables can be considered as
having fixed effects and most blocking, sampling design, control and repeated measures as having
random effects.

In a general linear regression model, defined by

y ¼ X
 þ 	

where y is a vector of n observations on the dependent variable,

X is an n by p design matrix of independent variables,


 is a vector of p unknown parameters,

and 	 is a vector of n, independent and identically distributed, unknown errors, with 	eN 0; �2ð Þ,
there are p fixed effects (the 
) and a single random effect (the error term 	).

An extension to the general linear regression model that allows for additional random effects is the linear
mixed effects regression model, (sometimes called the variance components model). One parameterisa-
tion of a linear mixed effects model is

y ¼ X
 þ Z� þ 	

where y is a vector of n observations on the dependent variable,

X is an n by p design matrix of fixed independent variables,


 is a vector of p unknown fixed effects,

Z is an n by q design matrix of random independent variables,
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� is a vector of length q of unknown random effects,

	 is a vector of length n of unknown random errors,

and � and 	 are normally distributed with expectation zero and variance / covariance matrix defined by

Var �
	

	 

¼ G 0

0 R

	 

:

The functions currently available in this chapter are restricted to cases where R ¼ �2
RI, I is the n� n

identity matrix and G is a diagonal matrix. Given this restriction the random variables, Z, can be
subdivided into g � q groups containing one or more variables. The variables in the ith group are
identically distributed with expectation zero and variance �2

i . The model therefore contains three sets of
unknowns, the fixed effects, 
, the random effects, �, and a vector of gþ 1 variance components, �, with

� ¼ �2
1; �

2
2; . . . ; ; ; �2

g�1; �
2
g; �

2
R

n o
. Rather than work directly with � and the full likelihood function, � is

replaced by �� ¼ �2
1=�

2
R; �

2
2=�

2
R; . . . ; �2

g�1=�
2
R; �

2
g=�

2
R; 1

n o
and the profiled likelihood function is used

instead.

The model parameters are estimated using an iterative method based on maximizing either the restricted
(profiled) likelihood function or the (profiled) likelihood functions. Fitting the model via restricted
maximum likelihood involves maximizing the function

�2lR ¼ log Vj jð Þ þ n� pð Þlog rTV �1r
� �

þ log XTV �1X
�� ��þ n� pð Þ 1þ log 2�= n� pð Þð Þð Þ þ n� pð Þ:

Whereas fitting the model via maximum likelihood involves maximizing

�2lR ¼ log Vj jð Þ þ nlog rTV �1r
� �

þ nlog 2�=nð Þ þ n:
In both cases

V ¼ ZGZT þ R; r ¼ y�Xb and b ¼ XTV �1X
� ��1

XTV �1y:

Once the final estimates for �� have been obtained, the value of �2
R is given by

�2
R ¼ rTV �1r

� �
= n� pð Þ:

Case weights, Wc, can be incorporated into the model by replacing XTX and ZTZ with XTWcX and
ZTWcZ respectively, for a diagonal weight matrix Wc.

2.7 Quantile Regression

Quantile regression is related to least squares regression in that both are interested in studying the
relationship between a response variable and one or more independent or explanatory variables.
However, whereas least squares regression is concerned with modelling the conditional mean of the
dependent variable, quantile regression models the conditional � th quantile of the dependent variable, for
some value of � 2 0; 1ð Þ. So, for example, � ¼ 0:5 would be the median.

Throughout this section we will be making use of the following definitions:

(a) If Z is a real valued random variable with distribution function F and density function f , such that

F �ð Þ ¼ P Z � �ð Þ ¼
Z �

�1
f zð Þdz

then the � th quantile, �, can be defined as

� ¼ F�1 �ð Þ ¼ inf z : F zð Þ � �f g; � 2 0; 1ð Þ:
(b) I Lð Þ denotes an indicator function taking the value 1 if the logical expression L is true and 0

otherwise, e.g., I z < 0ð Þ ¼ 1 if z < 0 and 0 if z � 0.

(c) y denotes a vector of n observations on the dependent (or response) variable,
y ¼ yi : i ¼ 1; 2; . . . ; nf g.

(d) X denotes an n� p matrix of explanatory or independent variables, often referred to as the design
matrix, and xi denotes a column vector of length p which holds the ith row of X.
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2.7.1 Finding a sample quantile as an optimization problem

Consider the piecewise linear loss function

�� zð Þ ¼ z � � I z < 0ð Þð Þ
The minimum of the expectation

E �� z� �ð Þð Þ ¼ � � 1ð Þ
Z �

�1
z� �ð Þf zð Þdzþ �

Z 1
�

z� �ð Þf zð Þdz

can be obtained by using the integral rule of Leibnitz to differentiate with respect to z and then setting
the result to zero, giving

1� �ð Þ
Z �

�1
f zð Þdz�

Z 1
�

f zð Þdz ¼ F �ð Þ � � ¼ 0

hence � ¼ F�1 �ð Þ when the solution is unique. If the solution is not unique then there exists a range of
quantiles, each of which is equally valid. Taking the smallest value of such a range ensures that the
empirical quantile function is left-continuous. Therefore obtaining the � th quantile of a distribution F
can be achieved by minimizing the expected value of the loss function �� .

This idea of obtaining the quantile by solving an optimization problem can be extended to finding the
� th sample quantile. Given a vector of n observed values, y, from some distribution the empirical

distribution function, Fn �ð Þ ¼ n�1
Xn
i¼1

I yi � �ð Þ provides an estimate of the unknown distribution

function F giving an expected loss of

E �� y� �ð Þð Þ ¼ n�1
Xn
i¼1

�� yi � �ð Þ

and therefore the problem of finding the � th sample quantile, �̂ �ð Þ, can be expressed as finding the
solution to the problem

minimize
�2R

Xn
i¼1

�� yi � �ð Þ

effectively replacing the operation of sorting, usually required when obtaining a sample quantile, with an
optimization.

2.7.2 From least squares to quantile regression

Given the vector y it is a well known result that the sample mean, ŷ, solves the least squares problem

minimize
2R

Xn
i¼1

yi � ð Þ2:

This result leads to least squares regression where, given design matrix X and defining the conditional
mean of y as  Xð Þ ¼ X
, an estimate of 
 is obtained from the solution to

minimize

2R

p

Xn
i¼1

yi � xT
i 


� �2
:

Quantile regression can be derived in a similar manner by specifying the � th conditional quantile as
Qy � jXð Þ ¼ X
 �ð Þ and estimating 
 �ð Þ as the solution to

minimize

2R

p

Xn
i¼1

�� yi � xT
i 


� �
: ð10Þ

Introduction – g02 NAG Library Manual

g02.16 Mark 24



2.7.3 Quantile regression as a linear programming problem

By introducing 2n slack variables, u ¼ ui : i ¼ 1; 2; . . . ; nf g and v ¼ ui : i ¼ 1; 2; . . . ; nf g, the quantile
regression minimization problem, (10), can be expressed as a linear programming (LP) problem, with
primal and associated dual formulations

(a) Primal form

minimize
u;v;
ð Þ2R

n
þ�R

n
þ�R

p
�eTuþ 1� �ð ÞeTv subject to y ¼ X
 þ u� v ð11Þ

where e is a vector of length n, where each element is 1.

If ri denotes the ith residual, ri ¼ yi � xT
i 
, then the slack variables, u; vð Þ, can be thought as

corresponding to the absolute value of the positive and negative residuals respectively with

ui ¼ ri if ri > 0
0 otherwise

�
vi ¼ �ri if ri < 0

0 otherwise

�
(b) Dual form

The dual formulation of (11) is given by

maximize
d

yTd subject to XTd ¼ 0; d 2 � � 1; �½ �n

which, on setting a ¼ dþ 1� �ð Þe, is equivalent to

maximize
a

yTa subject to XTa ¼ 1� �ð ÞXTe; a 2 0; 1½ �n ð12Þ

(c) Canonical form

Linear programming problems are often described in a standard way, called the canonical form. The
canonical form of an LP problem is

minimize
z

cTz subject to ll � z
Az

� 
� lu:

Letting 0p denote a vector of p zeros 	1p denote a vector of p arbitarily small or large values, In�n
denote the n� n identity matrix, c ¼ a; bf g denote the row vector constructed by concatenating the
elements of vector b to the elements of vector a and C ¼ A;B½ � denote the matrix constructed by
concatenating the columns of matrix B onto the columns of matrix A then setting

cT ¼ 0p; �eT; 1� �ð ÞeT
� �

zT ¼ 
T; uT; vTf g
A ¼ X; In�n;�In�n½ � b ¼ y
lu ¼ þ1p;1n;1n; y

� �
ll ¼ �1p; 0n; 0n; y

� �
gives the quantile regression LP problem as described in (11).

Once expressed as an LP problem the parameter estimates 
̂ �ð Þ can be obtained in a number of ways, for
example via the inertia-controlling method of Gill and Murray (1978) (see nag_opt_lp (e04mfc)), the
simplex method or an interior point method as used by nag_regsn_quant_linear_iid (g02qfc) and
nag_regsn_quant_linear (g02qgc).

2.7.4 Estimation of the covariance matrix

Koenker (2005) shows that the limiting covariance matrix of
ffiffiffi
n
p


̂ �ð Þ � 
 �ð Þ
� �

is of the form of a

Huber Sandwich. Therefore, under the assumption of Normally distributed errorsffiffiffi
n
p


̂ �ð Þ � 
 �ð Þ
� �


 N 0; � 1� �ð ÞHn �ð Þ�1JnHn �ð Þ�1
� �

ð13Þ

where
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Jn ¼ n�1
Xn
i¼1

xix
T
i

Hn �ð Þ ¼ lim
n!1

n�1
Xn
i¼1

xix
T
i fi Qyi � jxið Þ
� �

and fi Qyi � jxið Þ
� �

denotes the conditional density of the response y evaluated at the � th conditional
quantile.

More generally, the asymptotic covariance matrix for 
̂ �1ð Þ; 
̂ �1ð Þ; . . . ; 
̂ �nð Þ has blocks defined by

cov
ffiffiffi
n
p


̂ �ið Þ � 
 �ið Þ
� �

;
ffiffiffi
n
p


̂ �j
� �
� 
 �j

� �� �� �
¼ min �i; �j

� �
� �i�j

� �
Hn �ið Þ�1JnHn �j

� ��1 ð14Þ

Under the assumption of independent, identically distributed (iid) errors, (13) simplifies toffiffiffi
n
p


̂ �ð Þ � 
 �ð Þ
� �


 N 0; � 1� �ð Þs �ð Þ2 XTX
� ��1

� �
where s �ð Þ is the sparsity function, given by

s �ð Þ ¼ 1

f F�1 �ð Þð Þ

a similar simplification occurs with (14).

In cases where the assumption of iid errors does not hold, Powell (1991) suggests using a kernel
estimator of the form

Ĥn �ð Þ ¼ ncnð Þ�1
Xn
i¼1

K
yi � xT

i 
̂ �ð Þ
cn

 !
xix

T
i

for some bandwidth parameter cn satisfying lim
n!1

cn ! 0 and lim
n!1

ffiffiffi
n
p

cn !1 and Hendricks and

Koenker (1991) suggest a method based on an extension of the idea of sparsity.

Rather than use an asymptotic estimate of the covariance matrix, it is also possible to use bootstrapping.
Roughly speaking the original data is resampled and a set of parameter estimates obtained from each
new sample. A sample covariance matrix is then constructed from the resulting matrix of parameter
estimates.

2.8 Latent Variable Methods

Regression by means of projections to latent structures also known as partial least squares, is a latent
variable linear model suited to data for which:

the number of x-variables is high compared to the number of observations;

x-variables and/or y-variables are multicollinear.

Latent variables are linear combinations of x-variables that explain variance in x and y-variables. These
latent variables, known as factors, are extracted iteratively from the data. A choice of the number of
factors to include in a model can be made by considering diagnostic statistics such as the variable
influence on projections (VIP).
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3 Recommendations on Choice and Use of Available Functions

3.1 Correlation

3.1.1 Product-moment correlation

Let SSx be the sum of squares of deviations from the mean, �x, for the variable x for a sample of size n,
i.e.,

SSx ¼
Xn
i¼1

xi � �xð Þ2

and let SCxy be the cross-products of deviations from the means, �x and �y, for the variables x and y for a
sample of size n, i.e.,

SCxy ¼
Xn
i¼1

xi � �xð Þ yi � �yð Þ:

Then the sample covariance of x and y is

cov x; yð Þ ¼ SCxy

n� 1ð Þ

and the product-moment correlation coefficient is

r ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xð Þ var yð Þ

p ¼ SCxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSxSSy

p :

nag_sum_sqs_update (g02btc) updates the sample sums of squares and cross-products and deviations
from the means by the addition/deletion of a (weighted) observation.

nag_sum_sqs (g02buc) computes the sample sums of squares and cross-products deviations from the
means (optionally weighted). The output from multiple calls to nag_sum_sqs (g02buc) can be combined
via a call to nag_sum_sqs_combine (g02bzc), allowing large datasets to be summarised across multiple
processing units.

nag_sum_sqs_update (g02btc) updates the sample sums of squares and cross-products and deviations
from the means by the addition/deletion of a (weighted) observation.

nag_cov_to_corr (g02bwc) computes the product-moment correlation coefficients from the sample sums
of squares and cross-products of deviations from the means.

The three functions compute only the upper triangle of the correlation matrix which is stored in a one-
dimensional array in packed form.

nag_corr_cov (g02bxc) computes both the (optionally weighted) covariance matrix and the (optionally
weighted) correlation matrix. These are returned in two-dimensional arrays. (Note that
nag_sum_sqs_update (g02btc) and nag_sum_sqs (g02buc) can be used to compute the sums of squares
from zero.)

3.1.2 Product-moment correlation with missing values

If there are missing values then nag_sum_sqs (g02buc) and nag_corr_cov (g02bxc), as described above,
will allow casewise deletion by you giving the observation zero weight (compared with unit weight for
an otherwise unweighted computation).

3.1.3 Nonparametric correlation

nag_ken_spe_corr_coeff (g02brc) computes Kendall and/or Spearman nonparametric rank correlation
coefficients. The function allows for a subset of variables to be selected and for observations to be
excluded from the calculations if, for example, they contain missing values.
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3.1.4 Partial correlation

nag_partial_corr (g02byc) computes a matrix of partial correlation coefficients from the correlation
coefficients or variance-covariance matrix returned by nag_corr_cov (g02bxc).

3.1.5 Robust correlation

nag_robust_m_corr_user_fn (g02hlc) and nag_robust_m_corr_user_fn_no_derr (g02hmc) compute robust
estimates of the variance-covariance matrix by solving the equations

1

n

Xn
i¼1

w zik k2

� �
zi ¼ 0

and

1

n

Xn
i¼1

u zik k2

� �
ziz

T
i � v zik k2

� �
I ¼ 0;

as described in Section 2.1.4 for user-supplied functions w and u. Two options are available for v, either
v tð Þ ¼ 1 for all t or v tð Þ ¼ u tð Þ.
nag_robust_m_corr_user_fn_no_derr (g02hmc) requires only the function w and u to be supplied while
nag_robust_m_corr_user_fn (g02hlc) also requires their derivatives.

In general nag_robust_m_corr_user_fn (g02hlc) wi l l be considerably fas ter than
nag_robust_m_corr_user_fn_no_derr (g02hmc) and should be used if derivatives are available.

nag_robust_corr_estim (g02hkc) computes a robust variance-covariance matrix for the following
functions:

u tð Þ ¼ au=t2 if t < a2
u

u tð Þ ¼ 1 if a2
u � t � b2

u
u tð Þ ¼ bu=t2 if t > b2

u

and

w tð Þ ¼ 1 if t � cw
w tð Þ ¼ cw=t if t > cw

for constants au, bu and cw.

These functions solve a minimax space problem considered by Huber (1981). The values of au, bu and
cw are calculated from the fraction of gross errors; see Hampel et al. (1986) and Huber (1981).

To compute a correlation matrix from the variance-covariance matrix nag_cov_to_corr (g02bwc) may be
used.

3.1.6 Nearest correlation matrix

Four functions are provided to calculate a nearest correlation matrix. The choice of function will depend
on what definition of ‘nearest’ is required and whether there is any particular structure desired in the
resulting correlation matrix.

nag_nearest_correlation (g02aac) computes the nearest correlation matrix in the Frobenius norm, using
the method of Qi and Sun (2006).

nag_nearest_correlation_bounded (g02abc) uses an extension of the method implemented in
nag_nearest_correlation (g02aac) allowing for the row and column weighted Frobenius norm to be
used as well as bounds on the eigenvalues of the resulting correlation matrix to be specified.

nag_nearest_correlation_k_factor (g02aec) computes the factor loading matrix, allowing a correlation
matrix with a k-factor structure to be computed.

nag_nearest_correlation_h_weight (g02ajc) again computes the nearest correlation matrix in the
Frobenius norm, but allows for element-wise weighting as well as bounds on the eigenvalues.
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3.2 Regression

3.2.1 Simple linear regression

Two functions are provided for simple linear regression. The function nag_simple_linear_regression
(g02cac) calculates the parameter estimates for a simple linear regression with or without a constant
term. The function nag_regress_confid_interval (g02cbc) calculates fitted values, residuals and
confidence intervals for both the fitted line and individual observations. This function produces the
information required for various regression plots.

3.2.2 Ridge regression

nag_regsn_ridge_opt (g02kac) calculates a ridge regression, optimizing the ridge parameter according to
one of four prediction error criteria.

nag_regsn_ridge (g02kbc) calculates ridge regressions for a given set of ridge parameters.

3.2.3 Polynomial regression and nonlinear regression

No functions are currently provided in this chapter for polynomial regression. If you wish to perform
polynomial regressions you have three alternatives: you can use the multiple linear regression functions,
nag_regsn_mult_linear (g02dac), with a set of independent variables which are in fact simply the same
single variable raised to different powers, or you can use the function nag_dummy_vars (g04eac) to
compute orthogonal polynomials which can then be used with nag_regsn_mult_linear (g02dac), or you
can use the functions in Chapter e02 (Curve and Surface Fitting) which fit polynomials to sets of data
points using the techniques of orthogonal polynomials. This latter course is to be preferred, since it is
more efficient and liable to be more accurate, but in some cases more statistical information may be
required than is provided by those functions, and it may be necessary to use the functions of this chapter.

More general nonlinear regression models may be fitted using the optimization functions in Chapter e04,
which contains functions to minimize the functionXn

i¼1

e2
i

where the regression parameters are the variables of the minimization problem.

3.2.4 Multiple linear regression – general linear model

nag_regsn_mult_linear (g02dac) fits a general linear regression model using the QR method and an SVD
if the model is not of full rank. The results returned include: residual sum of squares, parameter
estimates, their standard errors and variance-covariance matrix, residuals and leverages. There are also
several functions to modify the model fitted by nag_regsn_mult_linear (g02dac) and to aid in the
interpretation of the model.

nag_regsn_mult_linear_addrem_obs (g02dcc) adds or deletes an observation from the model.

nag_regsn_mult_linear_upd_model (g02ddc) computes the parameter estimates, and their standard errors
and variance-covariance matrix for a model that is modified by nag_regsn_mult_linear_addrem_obs
(g02dcc), nag_regsn_mult_linear_add_var (g02dec) or nag_regsn_mult_linear_delete_var (g02dfc).

nag_regsn_mult_linear_add_var (g02dec) adds a new variable to a model.

nag_regsn_mult_linear_delete_var (g02dfc) drops a variable from a model.

nag_regsn_mult_linear_newyvar (g02dgc) fits the regression to a new dependent variable, i.e., keeping
the same independent variables.

nag_regsn_mult_linear_tran_model (g02dkc) calculates the estimates of the parameters for a given set of
constraints, (e.g., parameters for the levels of a factor sum to zero) for a model which is not of full rank
and the SVD has been used.

nag_regsn_mult_linear_est_func (g02dnc) calculates the estimate of an estimable function and its
standard error.
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Note: nag_regsn_mult_linear_add_var (g02dec) also allows you to initialize a model building process
and then to build up the model by adding variables one at a time.

3.2.5 Selecting regression models

To aid the selection of a regression model the following functions are available.

nag_all_regsn (g02eac) computes the residual sums of squares for all possible regressions for a given set
of dependent variables. The function allows some variables to be forced into all regressions.

nag_cp_stat (g02ecc) computes the values of R2 and Cp from the residual sums of squares as provided
by nag_all_regsn (g02eac).

nag_step_regsn (g02eec) enables you to fit a model by forward selection. You may call nag_step_regsn
(g02eec) a number of times. At each call the function will calculate the changes in the residual sum of
squares from adding each of the variables not already included in the model, select the variable which
gives the largest change and then if the change in residual sum of squares meets the given criterion will
add it to the model.

nag_full_step_regsn (g02efc) uses a full stepwise selection to choose a subset of the explanatory
variables. The method repeatedly applies a forward selection step followed by a backward elimination
step until neither step updates the current model.

3.2.6 Residuals

nag_regsn_std_resid_influence (g02fac) computes the following standardized residuals and measures of
influence for the residuals and leverages produced by nag_regsn_mult_linear (g02dac):

(i) Internally studentized residual;

(ii) Externally studentized residual;

(iii) Cook’s D statistic;

(iv) Atkinson’s T statistic.

nag_durbin_watson_stat (g02fcc) computes the Durbin–Watson test statistic and bounds for its
significance to test for serial correlation in the errors, ei.

3.2.7 Robust regression

For robust regression using M-estimates instead of least squares the function nag_robust_m_regsn_estim
(g02hac) will generally be suitable. nag_robust_m_regsn_estim (g02hac) provides a choice of four
 -functions (Huber’s, Hampel’s, Andrew’s and Tukey’s) plus two different weighting methods and the
option not to use weights. If other weights or different  -functions are needed the function
nag_robust_m_regsn_user_fn (g02hdc) may be used. nag_robust_m_regsn_user_fn (g02hdc) requires
you to supply weights, if required, and also functions to calculate the  -function and, optionally, the
�-function. nag_robust_m_regsn_wts (g02hbc) can be used in calculating suitable weights. The function
nag_robust_m_regsn_param_var (g02hfc) can be used after a call to nag_robust_m_regsn_user_fn
(g02hdc) in order to calculate the variance-covariance estimate of the estimated regression coefficients.

For robust regression, using least absolute deviation, nag_lone_fit (e02gac) can be used.

3.2.8 Generalized linear models

There are four functions for fitting generalized linear models. The output includes: the deviance,
parameter estimates and their standard errors, fitted values, residuals and leverages.

nag_glm_normal (g02gac) Normal distribution.

nag_glm_binomial (g02gbc) binomial distribution.

nag_glm_poisson (g02gcc) Poisson distribution.

nag_glm_gamma (g02gdc) gamma distribution.
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While nag_glm_normal (g02gac) can be used to fit linear regression models (i.e., by using an identity
link) this is not recommended as nag_regsn_mult_linear (g02dac) will fit these models more efficiently.
nag_glm_poisson (g02gcc) can be used to fit log-linear models to contingency tables.

In addition to the functions to fit the models there is one function to predict from the fitted model and
two functions to aid interpretation when the fitted model is not of full rank, i.e., aliasing is present.

nag_glm_predict (g02gpc) computes a predicted value and its associated standard error based on a
previously fitted generalized linear model.

nag_glm_tran_model (g02gkc) computes parameter estimates for a set of constraints, (e.g., sum of
effects for a factor is zero), from the SVD solution provided by the fitting function.

nag_glm_est_func (g02gnc) calculates an estimate of an estimable function along with its standard error.

3.2.9 Linear mixed effects regression

There are four functions for fitting linear mixed effects regression.

nag_reml_mixed_regsn (g02jac) and nag_reml_hier_mixed_regsn (g02jdc) uses restricted maximum
likelihood (REML) to fit the model.

nag_ml_mixed_regsn (g02jbc) and nag_ml_hier_mixed_regsn (g02jec) uses maximum likelihood to fit
the model.

For all functions the output includes: either the maximum likelihood or restricted maximum likelihood
and the fixed and random parameter estimates, along with their standard errors. Whilst it is possible to fit
a hierachical model using nag_reml_mixed_regsn (g02jac) or nag_ml_mixed_regsn (g02jbc),
nag_reml_hier_mixed_regsn (g02jdc) and nag_ml_hier_mixed_regsn (g02jec) allow the model to be
specified in a more intuitive way. nag_hier_mixed_init (g02jcc) must be called prior to calling
nag_reml_hier_mixed_regsn (g02jdc) or nag_ml_hier_mixed_regsn (g02jec).

As the estimates of the variance components are found using an iterative procedure initial values must be
supplied for each �. In all four functions you can either specify these initial values, or allow the function
to calculate them from the data using minimum variance quadratic unbiased estimation (MIVQUE0).
Setting the maximum number of iterations to zero in any of the functions will return the corresponding
likelihood, parameter estimates and standard errors based on these initial values.

3.2.10 Linear quantile regression

Two functions are provided for performing linear quantile regression, nag_regsn_quant_linear_iid
(g02qfc) and nag_regsn_quant_linear (g02qgc). Of these, nag_regsn_quant_linear_iid (g02qfc) provides
a simplified interface to nag_regsn_quant_linear (g02qgc), where many of the input parameters have
been given default values and the amount of output available has been reduced.

Prior to calling nag_regsn_quant_linear (g02qgc) the optional argument array must be initialized by
calling nag_g02_opt_set (g02zkc) with optstr set to Initialize. Once these arrays have been initialized
nag_g02_opt_get (g02zlc) can be called to query the value of an optional argument.

3.2.11 Partial Least Squares (PLS)

nag_pls_orth_scores_svd (g02lac) calculates a nonlinear, iterative PLS by using singular value
decomposition.

nag_pls_orth_scores_wold (g02lbc) calculates a nonlinear, iterative PLS by using Wold’s method.

nag_pls_orth_scores_fit (g02lcc) calculates parameter estimates for a given number of PLS factors.

nag_pls_orth_scores_pred (g02ldc) calculates predictions given a PLS model.
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4 Functionality Index

Computes the nearest correlation matrix using element-wise weights
..... nag_nearest_correlation_h_weight (g02ajc)

Computes the nearest correlation matrix using the k-factor model
..... nag_nearest_correlation_k_factor (g02aec)

Computes the nearest correlation matrix using the method of Qi and Sun,
augmented nag_nearest_correlation (g02aac) to incorporate weights and bounds

..... nag_nearest_correlation_bounded (g02abc)
unweighted ....................................................................................... nag_nearest_correlation (g02aac)

Generalized linear models,
binomial errors ......................................................................................... nag_glm_binomial (g02gbc)
computes estimable function .................................................................... nag_glm_est_func (g02gnc)
gamma errors .............................................................................................. nag_glm_gamma (g02gdc)
Normal errors .............................................................................................. nag_glm_normal (g02gac)
Poisson errors ............................................................................................ nag_glm_poisson (g02gcc)
prediction .................................................................................................... nag_glm_predict (g02gpc)
transform model parameters ................................................................ nag_glm_tran_model (g02gkc)

Hierarchical mixed effects regression,
initiation ................................................................................................. nag_hier_mixed_init (g02jcc)
using maximum likelihood ........................................................... nag_ml_hier_mixed_regsn (g02jec)
using restricted maximum likelihood ........................................ nag_reml_hier_mixed_regsn (g02jdc)

Linear mixed effects regression,
via maximum likelihood (ML) ............................................................ nag_ml_mixed_regsn (g02jbc)
via restricted maximum likelihood (REML) ..................................... nag_reml_mixed_regsn (g02jac)

Multiple linear regression/General linear model,
add/delete observation from model .............................. nag_regsn_mult_linear_addrem_obs (g02dcc)
add independent variable to model .................................... nag_regsn_mult_linear_add_var (g02dec)
computes estimable function .............................................. nag_regsn_mult_linear_est_func (g02dnc)
delete independent variable from model ......................... nag_regsn_mult_linear_delete_var (g02dfc)
general linear regression model ........................................................ nag_regsn_mult_linear (g02dac)
regression for new dependent variable .............................. nag_regsn_mult_linear_newyvar (g02dgc)
regression parameters from updated model .................. nag_regsn_mult_linear_upd_model (g02ddc)
transform model parameters .......................................... nag_regsn_mult_linear_tran_model (g02dkc)

Non-parametric rank correlation (Kendall and/or Spearman):
missing values,

casewise treatment of missing values,
preserving input data ............................................................ nag_ken_spe_corr_coeff (g02brc)

Partial least squares,
calculates predictions given an estimated PLS model ................. nag_pls_orth_scores_pred (g02ldc)
fits a PLS model for a given number of factors ............................. nag_pls_orth_scores_fit (g02lcc)
orthogonal scores using SVD ......................................................... nag_pls_orth_scores_svd (g02lac)
orthogonal scores using Wold’s method ...................................... nag_pls_orth_scores_wold (g02lbc)

Product-moment correlation,
correlation matrix,

compute correlation and covariance matrices ............................................ nag_corr_cov (g02bxc)
compute from sum of squares matrix .................................................. nag_cov_to_corr (g02bwc)
compute partial correlation and covariance matrices ............................ nag_partial_corr (g02byc)

sum of squares matrix,
combine ........................................................................................ nag_sum_sqs_combine (g02bzc)
compute ....................................................................................................... nag_sum_sqs (g02buc)
update .............................................................................................. nag_sum_sqs_update (g02btc)
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Quantile regression,
linear,

comprehensive ............................................................................ nag_regsn_quant_linear (g02qgc)
simple .................................................................................... nag_regsn_quant_linear_iid (g02qfc)

Residuals,
Durbin–Watson test .......................................................................... nag_durbin_watson_stat (g02fcc)
standardized residuals and influence statistics ...................... nag_regsn_std_resid_influence (g02fac)

Ridge regression,
ridge parameter(s) supplied ......................................................................... nag_regsn_ridge (g02kbc)
ridge parameter optimized .................................................................... nag_regsn_ridge_opt (g02kac)

Robust correlation,
Huber’s method ................................................................................. nag_robust_corr_estim (g02hkc)
user-supplied weight function only ........................... nag_robust_m_corr_user_fn_no_derr (g02hmc)
user-supplied weight function plus derivatives ......................... nag_robust_m_corr_user_fn (g02hlc)

Robust regression,
compute weights for use with nag_robust_m_regsn_user_fn (g02hdc)

..... nag_robust_m_regsn_wts (g02hbc)
standard M-estimates ................................................................. nag_robust_m_regsn_estim (g02hac)
user-supplied weight functions ............................................... nag_robust_m_regsn_user_fn (g02hdc)
variance-covariance matrix following nag_robust_m_regsn_user_fn (g02hdc)

..... nag_robust_m_regsn_param_var (g02hfc)

Selecting regression model,
all possible regressions .................................................................................... nag_all_regsn (g02eac)
forward selection ........................................................................................... nag_step_regsn (g02eec)
R2 and Cp statistics ............................................................................................ nag_cp_stat (g02ecc)

Service functions,
general option getting function ................................................................... nag_g02_opt_get (g02zlc)
general option setting function ................................................................... nag_g02_opt_set (g02zkc)

Simple linear regression,
no intercept ................................................................................ nag_regress_confid_interval (g02cbc)
with intercept .......................................................................... nag_simple_linear_regression (g02cac)

Stepwise linear regression,
Clarke’s sweep algorithm ....................................................................... nag_full_step_regsn (g02efc)

5 Auxiliary Functions Associated with Library Function Arguments

g02efh nag_full_step_regsn_monfun
See the description of the argument monfun in nag_full_step_regsn (g02efc).

6 Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Function

Mark of
Withdrawal Replacement Function(s)

nag_full_step_regsn_monit (g02ewc) 25 nag_full_step_regsn_monfun (g02efh)
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