f11gtc

NAG Library Function Document

nag_sparse_herm_basic_diagnostic (f11gtc)

1 Purpose

nag_sparse_herm_basic_diagnostic (fl1gtc) is the third in a suite of three functions for the iterative solution of a complex Hermitian system of simultaneous linear equations (see Golub and Van Loan (1996)). nag_sparse_herm_basic_diagnostic (fl1gtc) returns information about the computations during an iteration and/or after this has been completed. The first function of the suite, nag_sparse_herm_basic_setup (fl1grc), is a setup function, the second function, nag_sparse_herm_basic_solver (fl1gsc) is the proper iterative solver.

These three functions are suitable for the solution of large sparse complex Hermitian systems of equations.

2 Specification

3 Description

nag_sparse_herm_basic_diagnostic (fl1gtc) returns information about the solution process. It can be called both during a monitoring step of the solver nag_sparse_herm_basic_solver (fl1gsc) or after this solver has completed its tasks. Calling nag_sparse_herm_basic_diagnostic (fl1gtc) at any other time will result in an error condition being raised.

For further information you should read the documentation for nag_sparse_herm_basic_setup (f11grc) and nag_sparse_herm_basic_solver (f11gsc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: itn – Integer *

On exit: the number of iterations carried out by nag_sparse_herm_basic_solver (fl1gsc).

2: **stplhs** – double *

On exit: the current value of the left-hand side of the termination criterion used by nag_sparse_herm_basic_solver (fl1gsc).

3: stprhs – double *

On exit: the current value of the right-hand side of the termination criterion used by nag_sparse_herm_basic_solver (fl1gsc).

Output

Output

Output

4: **anorm** – double *

On exit: the norm $||A||_1 = ||A||_{\infty}$ when either it has been supplied to nag_sparse_herm_basic_setup (fllgrc) or it has been estimated by nag_sparse_herm_basic_solver (fllgsc) (see also Sections 3 and 5 in nag_sparse_herm_basic_setup (fllgrc)). Otherwise, **anorm** = 0.0 is returned.

5: sigmax – double *

On exit: the current estimate of the largest singular value $\sigma_1(\bar{A})$ of the preconditioned iteration matrix $\bar{A} = E^{-1}AE^{-H}$, when either it has been supplied to nag_sparse_herm_basic_setup (f11grc) or it has been estimated by nag_sparse_herm_basic_solver (f11gsc) (see also Sections 3 and 5 in nag_sparse_herm_basic_setup (f11grc)). Note that if its < itn then sigmax contains the final estimate. If, on final exit from nag_sparse_herm_basic_solver (f11gsc), its = itn, then the estimation of $\sigma_1(\bar{A})$ may have not converged: in this case you should look at the value returned in signer. Otherwise, sigmax = 0.0 is returned.

6: its – Integer *

On exit: the number of iterations employed so far in the computation of the estimate of $\sigma_1(\bar{A})$, the largest singular value of the preconditioned matrix $\bar{A} = E^{-1}AE^{-H}$, when $\sigma_1(\bar{A})$ has been estimated by nag_sparse_herm_basic_solver (fl1gsc) using the bisection method (see also Sections 3, 5 and 9 in nag_sparse_herm_basic_setup (fl1grc)). Otherwise, **its** = 0 is returned.

7: sigerr – double *

On exit: if $\sigma_1(\bar{A})$ has been estimated by nag_sparse_herm_basic_solver (fl1gsc) using bisection,

$$\mathbf{sigerr} = \max\left(\frac{\left|\sigma_{1}^{(k)} - \sigma_{1}^{(k-1)}\right|}{\sigma_{1}^{(k)}}, \frac{\left|\sigma_{1}^{(k)} - \sigma_{1}^{(k-2)}\right|}{\sigma_{1}^{(k)}}\right),$$

where k = its denotes the iteration number. The estimation has converged if siger \leq sigtol where sigtol is an input argument to nag_sparse_herm_basic_setup (fl1grc). Otherwise, siger = 0.0 is returned.

8: work[lwork] – const Complex

On entry: the array **work** as returned by nag_sparse_herm_basic_solver (fl1gsc) (see also Section 3 in nag_sparse_herm_basic_solver (fl1gsc)).

9: **lwork** – Integer

On entry: the dimension of the array **work** (see also Section 5 in nag_sparse_herm_basic_setup (fl1grc)).

Constraint: **lwork** \geq 120.

Note: although the minimum value of **lwork** ensures the correct functioning of nag_sparse_herm_basic_diagnostic (fl1gtc), a larger value is required by the iterative solver nag_sparse_herm_basic_solver (fl1gsc) (see also Section 5 in nag_sparse_herm_basic_setup (fl1grc)).

10: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

Input

Output

Output

Output

Output

Communication Array

Input/Output

NE_INT

On entry, **lwork** = $\langle value \rangle$. Constraint: **lwork** \geq 120.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_OUT_OF_SEQUENCE

nag_sparse_herm_basic_diagnostic (fl1gtc) has been called out of sequence.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag_sparse_herm_basic_setup (f11grc).