f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

NAG Library Function Document
nag_dtrsen (f08qgc)

1 Purpose

nag_dtrsen (f08qgc) reorders the Schur factorization of a real general matrix so that a selected cluster of
eigenvalues appears in the leading elements or blocks on the diagonal of the Schur form. The function
also optionally computes the reciprocal condition numbers of the cluster of eigenvalues and/or the
invariant subspace.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dtrsen (Nag_OrderType order, Nag_JobType job,
Nag_ComputeQType compqg, const Nag_Boolean select[], Integer n,
double t[], Integer pdt, double gl[], Integer pdg, double wr[],
double wi[], Integer *m, double *s, double *sep, NagError *fail)

3 Description

nag_dtrsen (f08qgc) reorders the Schur factorization of a real general matrix A = QTQT, so that a
selected cluster of eigenvalues appears in the leading diagonal elements or blocks of the Schur form.

The reordered Schur form 7 is computed by an orthogonal similarity transformation: T = ZTTZ.
Optionally the updated matrix Q of Schur vectors is computed as Q = QZ, giving A = QTQ".

Ty T
m sub-matrix 77;. Let Q be correspondingly partitioned as (Ql Qz) where () consists of the first m
columns of). Then AQ, = Q71};, and so the m columns of (); form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Let T = <), where the selected eigenvalues are precisely the eigenvalues of the leading m by

Optionally the function also computes estimates of the reciprocal condition numbers of the average of
the cluster of eigenvalues and of the invariant subspace.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

Mark 24 f08qgc.1

../GENINT/essint.pdf
../GENINT/essint.pdf

f08qgc NAG Library Manual

2: job — Nag JobType Input

On entry: indicates whether condition numbers are required for the cluster of eigenvalues and/or
the invariant subspace.

job = Nag_DoNothing
No condition numbers are required.

job = Nag_EigVals
Only the condition number for the cluster of eigenvalues is computed.

job = Nag_Subspace
Only the condition number for the invariant subspace is computed.

job = Nag_DoBoth
Condition numbers for both the cluster of eigenvalues and the invariant subspace are
computed.

Constraint: job = Nag_DoNothing, Nag_EigVals, Nag_Subspace or Nag_DoBoth.

3: compq — Nag ComputeQType Input
On entry: indicates whether the matrix () of Schur vectors is to be updated.

compq = Nag_UpdateSchur
The matrix @ of Schur vectors is updated.

compq = Nag_NotQ
No Schur vectors are updated.

Constraint: compq = Nag_UpdateSchur or Nag_NotQ.

4: select[dim] — const Nag_Boolean Input
Note: the dimension, dim, of the array select must be at least max(1,n).

On entry: the eigenvalues in the selected cluster. To select a real eigenvalue \j, select[j — 1] must
be set Nag_TRUE. To select a complex conjugate pair of eigenvalues A; and A;; (corresponding
to a 2 by 2 diagonal block), select[j — 1] and/or select[j] must be set to Nag TRUE. A complex
conjugate pair of eigenvalues must be either both included in the cluster or both excluded. See
also Section 9.

5: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

6: t[dim] — double Input/Output
Note: the dimension, dim, of the array t must be at least max(1, pdt x n).
The (4, j)th element of the matrix T is stored in

t[(j — 1) x pdt+ ¢ — 1] when order = Nag_ColMajor;
t[(i — 1) x pdt + j — 1] when order = Nag_RowMajor.

On entry: the n by n upper quasi-triangular matrix 7" in canonical Schur form, as returned by
nag_dhseqr (f08pec). See also Section 9.

On exit: t is overwritten by the updated matrix T.

7: pdt — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array t.

Constraint: pdt > max(1,n).

f08qgc.2 Mark 24

../F08/f08pec.pdf

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

10:
11:

12:

13:

14:

15:

q[dim] — double Input/Output
Note: the dimension, dim, of the array q must be at least

max(1, pdq x n) when compq = Nag _UpdateSchur;
1 when compq = Nag _NotQ.

The (7, j)th element of the matrix @ is stored in

q[(j — 1) x pdq + 7 — 1] when order = Nag_ColMajor;
q[(¢ — 1) x pdq + j — 1] when order = Nag_RowMajor.

On entry: if compq = Nag_UpdateSchur, q must contain the n by n orthogonal matrix) of Schur
vectors, as returned by nag_dhseqr (f08pec).

On exit: if compq = Nag_UpdateSchur, q contains the updated matrix of Schur vectors; the first m
columns of @ form an orthonormal basis for the specified invariant subspace.

If compq = Nag_NotQ, q is not referenced.

pdq — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array (.

Constraints:
if compq = Nag _UpdateSchur, pdq > max(1,n);
if compq = Nag NotQ, pdq > 1.

wr|dim] — double Output
wi[dim] — double Output

Note: the dimension, dim, of the arrays wr and wi must be at least max(1,n).

On exit: the real and imaginary parts, respectively, of the reordered eigenvalues of T. The
eigenvalues are stored in the same order as on the diagonal of T'; see Section 9 for details. Note

that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly
from its value before reordering.

m — Integer * Output
On exit: m, the dimension of the specified invariant subspace. The value of m is obtained by
counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of
eigenvalues (see select); 0 < m < n.

s — double * Output

On exit: if job = Nag_FigVals or Nag_DoBoth, s is a lower bound on the reciprocal condition
number of the average of the selected cluster of eigenvalues. If m = 0 or n, s = 1; if fail.code =
NE REORDER (see Section 6), s is set to zero.

If job = Nag_DoNothing or Nag_Subspace, s is not referenced.

sep — double * Output

On exit: if job = Nag_Subspace or Nag_DoBoth, sep is the estimated reciprocal condition number
of the specified invariant subspace. If m = 0 or n, sep = ||7’||; if fail.code = NE_REORDER (see
Section 6), sep is set to zero.

If job = Nag_DoNothing or Nag_EigVals, sep is not referenced.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Mark 24 f08qgc.3

../F08/f08pec.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf

f08qgc NAG Library Manual

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_ENUML_INT 2
On entry, compq = (value), pdq = (value) and n = (value).
Constraint: if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

On entry, pdt = (value).
Constraint: pdt > 0.
NE_INT_2
On entry, pdt = (value) and n = (value).
Constraint: pdt > max(1,n).
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.
NE_REORDER

The reordering of T failed because a selected eigenvalue was too close to an eigenvalue which
was not selected; this error exit can only occur if at least one of the eigenvalues involved was
complex. The problem is too ill-conditioned: consider modifying the selection of eigenvalues so
that eigenvalues which are very close together are either all included in the cluster or all excluded.
On exit, 7" may have been partially reordered, but wr, wi and @ (if requested) are updated
consistently with 7'; s and sep (if requested) are both set to zero.

7 Accuracy

The computed matrix T is similar to a matrix (7 + E), where
1Ell, = 0Ty,
and € is the machine precision.

s cannot underestimate the true reciprocal condition number by more than a factor of /min(m,n —m).
sep may differ from the true value by y/m(n — m). The angle between the computed invariant subspace
o)Al

sep

and the true subspace is

Note that if a 2 by 2 diagonal block is involved in the reordering, its off-diagonal elements are in general
changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is
sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block
to break into two 1 by 1 blocks, i.e., for a pair of complex eigenvalues to become purely real. The values
of real eigenvalues however are never changed by the reordering.

f08qgc.4 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

8 Parallelism and Performance

nag_dtrsen (f08qgc) is not threaded by NAG in any implementation.

nag_dtrsen (f08qgc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The input matrix 7" must be in canonical Schur form, as is the output matrix 7. This has the following
structure.

If all the computed eigenvalues are real, T is upper triangular, and the diagonal elements of T are the
eigenvalues; wr[i — 1] = t;;, for i=1,2,...,n and wi[i — 1] = 0.0.

If some of the computed eigenvalues form complex conjugate pairs, then 7" has 2 by 2 diagonal blocks.
Each diagonal block has the form
<f¢¢ i) _ <Oé 5)
tivti Tit1441 oo

where (7 <0. The corresponding eigenvalues are a=x+/[(y; wr[i—1]=wr[i] =qa;
wifi — 1] = +/|B7|; wili] = —wi[i — 1].

The complex analogue of this function is nag_ztrsen (f08quc).

10 Example

This example reorders the Schur factorization of the matrix A = QTQT such that the two real
eigenvalues appear as the leading elements on the diagonal of the reordered matrix 7', where

0.7995 —0.1144 0.0060 0.0336
0.0000 —0.0994 0.2478 0.3474
0.0000 —0.6483 —0.0994 0.2026
0.0000 0.0000 0.0000 —-0.1007

T =

and

0.6551 0.1037 0.3450 0.6641

0= 0.5236 —0.5807 —0.6141 —0.1068
| —0.5362 —0.3073 —0.2935 0.7293
0.0956 0.7467 —0.6463 0.1249

The example program for nag dtrsen (f08qgc) illustrates the computation of error bounds for the
eigenvalues.

The original matrix A is given in Section 10 in nag_dorghr (f08nfc).

10.1 Program Text

/* nag_dtrsen (f08ggc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include
#include
#include
#include

Mark 24

<stdio.h>
<math.h>
<nag.h>
<nag_stdlib.h>

f08qgc.5

../F08/f08quc.pdf
../F08/f08nfc.pdf
../F08/f08nfc.pdf

f08qgc

#include <nagf08.h>
#include <nagfl6.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)

{
/* Scalars */
Integer i, j, m, n, pda, pdc, pdq, pdt, select_len,
Integer exit_status = 0;
double alpha, beta, norm, s, sep;
NagError fail;

Nag_OrderType order;
/* Arrays */

double *a = 0, *c = 0, *qg
char nag_enum_arg[40];
Nag_Boolean *select = 0;

#ifdef NAG_COLUMN_MAJOR

#define T(I, J) t[(J-1)*pdt + I -

#define Q(I, J) gl(J-1)*pdg + I -
order = Nag_ColMajor;

#else

#define T(I, J) t[(I-1)*pdt + J -

#define Q(I, J) ql(I-1)*pdg + J -

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dtrsen (£08qgc) Example Program Results\n\n");

/* Skip heading in data file */

scanf ("s*[*\n] ");

scanf ("%1d%s*["\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdc = n;
pdg = n;
pdt = n;
#else
pda = n;
pdc = n;
pdq = n;
pdt = n;
#endif
w_len = n;

select_len = n;

/* Allocate memory */

if (! (a = NAG_ALLOC(n * n, doubl
1 (c = NAG_ALLOC(n * n, doubl

= NAG_ALLOC(n * n, doubl

Q
|

1 (

! (wi = NAG_ALLOC(w_len, double

! (wr = NAG_ALLOC(w_len, double))
! (select = NAG_ALLOC(select_len,
! (t = NAG_ALLOC(n * n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read T and Q from data file *
for (i = 1; i <= n; ++1i)

{
for (j = 1; J <= n; ++3j)
scanf ("s1f", &T(i, j));
}
scanf ("s*["\n] ");
for (i = 1; i <= n; ++i)

1]
1]

1]
1]

e)
e)
)

e

/

|
|
ag_Boolean)) ||

NAG Library Manual

w_1len;

Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qgc

}

scanf ("$*[*\n] ")

for (i = 0; i < n; ++1)
{

scanf ("%39s", nag_enum_arg) ;
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
select[i] = (Nag_Boolean) nag_enum_name_to_value(nag_enum_arg) ;
}

scanf ("s*["\n] ");

/* nag_dgemm (floéyac): Compute Q*T*QT and store in matrix A */
alpha = 1.0;
beta = 0.0;
nag_dgemm(order, Nag_NoTrans, Nag_NoTrans, n, n, n, alpha, q, pdq,
t, pdt, beta, c¢, pdc, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dgemm (fl6yac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
nag_dgemm(order, Nag_NoTrans, Nag_Trans, n, n, n, alpha, ¢, pdc, q,
pdg, beta, a, pda, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dgemm (flébyac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* nag_gen_real_mat_print (x04cac): Print Matrix A. */
fflush(stdout) ;
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Matrix A", 0, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_gen_real_mat_print (xO4cac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;

}
printf ("\n");

/* Reorder the Schur factorization T */
/* nag_dtrsen (£f08qggc).
* Reorder Schur factorization of real matrix, form
* orthonormal basis of right invariant subspace for
* selected eigenvalues, with estimates of sensitivities
*
/
nag_dtrsen(order, Nag_DoBoth, Nag_UpdateSchur, select, n, t, pdt,
q, pdq, wr, wi, &m, &s, &sep, &fail);

if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dtrsen (£08ggc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* nag_dgemm (fl6yac): Compute A = Q*T*Q T - Qt*Tt*Qt"T */

alpha = 1.0;

beta = 0.0;

nag_dgemm(order, Nag_NoTrans, Nag_NoTrans, n, n, n, alpha, q, pdq,
t, pdt, beta, c, pdc, &fail);

if (fail.code != NE_NOERROR)

Mark 24 f08qgc.7

f08qgc NAG Library Manual

{
printf ("Error from nag_dgemm (fl6yac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
¥

alpha = -1.0;
beta = 1.0;
nag_dgemm(order, Nag NoTrans, Nag_Trans, n, n, n, alpha, c, pdc, q,
pdg, beta, a, pda, &fail);
if (fail.code != NE_NOERROR)
{
printf ("Error from nag_dgemm (fl6yac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}

/* nag_dge_norm (fl6érac): Find norm of matrix A and print warning if */
/* it is too large */

nag_dge_norm(order, Nag_OneNorm, n, n, a, pda, &norm, &fail);

if (fail.code != NE_NOERROR)

{
printf ("Error from nag_dge_norm (flérac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
if (norm>pow(x02ajc(),0.8)) {
printf ("ss\n%s\n","Norm of Q*T*Q"H - (Qt*Tt*Qt"H) is much greater than 0.",
"Schur factorization has failed.");
} else {

/* Print condition number estimates */
printf (" Condition number estimate of the selected cluster of"
" eigenvalues = %11.2e\n", 1.0/s)
printf ("\n Condition number estimate of the specified invariant"
" subspace = %11.2e\n", 1.0/sep)
}

END:
NAG_FREE (a
NAG_FREE (c
NAG FREE(q
NAG_FREE (t
NAG_FREE (wi
NAG_FREE (w
NAG_FREE (s ect);

return exit_status;

10.2 Program Data

nag_dtrsen (£08ggc) Example Program Data

4 :Value of n
0.7995 -0.1144 0.0060 0.0336

0.0000 -0.0994 0.2478 0.3474

0.0000 -0.6483 -0.0994 0.2026

0.0000 0.0000 0.0000 -0.1007 :End of matrix T
0.6551 0.1037 0.3450 0.6641

0.5236 -0.5807 -0.6141 -0.1068
-0.5362 -0.3073 -0.2935 0.7293

0.0956 0.7467 -0.6463 0.1249 :End of matrix Q
Nag_TRUE Nag_FALSE Nag_FALSE Nag_TRUE :End of select

f08qgc.8 Mark 24

f08 — Least-squares and Eigenvalue Problems (LAPACK)

10.3 Program Results

nag_dtrsen
Matrix A
1

1 0.3500

2 0.0900

3 -0.4400

4 0.2500

Condition number estimate of the selected cluster of eigenvalues

Condition number estimate of the specified invariant subspace

(£08ggc)

2
0.4500
0.0700

-0.3300
-0.3200

Example

-0
-0
-0
-0

3
.1400
.5399
.0300
.1300

Program Results

OO OO

4

.1700
.3500
.1700
.1100

f08qgc

1.75e+00

3.22e+00

Mark 24

f08qgc.9 (last)

	f08qgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Arguments
	order
	job
	compq
	select
	n
	t
	pdt
	q
	pdq
	wr
	wi
	m
	s
	sep
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ENUM_INT_2
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_REORDER

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

