
NAG Library Function Document

nag_dgejsv (f08khc)

1 Purpose

nag_dgejsv (f08khc) computes the singular value decomposition (SVD) of a real m by n matrix A where
m � n, and optionally computes the left and/or right singular vectors. nag_dgejsv (f08khc) implements
the preconditioned Jacobi SVD of Drmac and Veselic. This is the expert driver function that calls
nag_dgesvj (f08kjc) after certain preconditioning. In most cases nag_dgesvd (f08kbc) or nag_dgesdd
(f08kdc) is sufficient to obtain the SVD of a real matrix. These are much simpler to use and also handle
the case m < n.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgejsv (Nag_OrderType order, Nag_Preprocess joba,
Nag_LeftVecsType jobu, Nag_RightVecsType jobv, Nag_ZeroCols jobr,
Nag_TransType jobt, Nag_Perturb jobp, Integer m, Integer n, double a[],
Integer pda, double sva[], double u[], Integer pdu, double v[],
Integer pdv, double work[], Integer iwork[], NagError *fail)

3 Description

The SVD is written as

A ¼ U�V T;

where � is an m by n matrix which is zero except for its n diagonal elements, U is an m by m
orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular
values of A in descending order of magnitude. The columns of U and V are the left and the right
singular vectors of A. The diagonal of � is computed and stored in the array sva.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.
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2: joba – Nag_Preprocess Input

On entry: specifies the form of pivoting for the QR factorization stage; whether an estimate of the
condition number of the scaled matrix is required; and the form of rank reduction that is
performed.

joba ¼ Nag ColpivRrank
The initial QR factorization of the input matrix is performed with column pivoting; no
estimate of condition number is computed; and, the rank is reduced by only the
underflowed part of the triangular factor R. This option works well (high relative accuracy)
if A ¼ BD, with well-conditioned B and arbitrary diagonal matrix D. The accuracy cannot
be spoiled by column scaling. The accuracy of the computed output depends on the
condition of B, and the procedure aims at the best theoretical accuracy.

joba ¼ Nag ColpivRrankCond
Computation as with joba ¼ Nag ColpivRrank with an additional estimate of the condition
number of B. It provides a realistic error bound.

joba ¼ Nag FullpivRrank
The initial QR factorization of the input matrix is performed with full row and column
pivoting; no estimate of condition number is computed; and, the rank is reduced by only
the underflowed part of the triangular factor R. If A ¼ D1 � C �D2 with ill-conditioned
diagonal scalings D1, D2, and well-conditioned matrix C, this option gives higher accuracy
than the joba ¼ Nag ColpivRrank option. If the structure of the input matrix is not known,
and relative accuracy is desirable, then this option is advisable.

joba ¼ Nag FullpivRrankCond
Computation as with joba ¼ Nag FullpivRrank with an additional estimate of the condition
number of B, where A ¼ DB (i.e., B ¼ C �D2). If A has heavily weighted rows, then
using this condition number gives too pessimistic an error bound.

joba ¼ Nag ColpivSVrankAbs
Computation as with joba ¼ Nag ColpivRrank except in the treatment of rank reduction. In
this case, small singular values are to be considered as noise and, if found, the matrix is
treated as numerically rank deficient. The computed SVD A ¼ U�V T restores A up to
f m; nð Þ � �� Ak k, where � is machine precision. This gives the procedure licence to
discard (set to zero) all singular values below n� �� Ak k.

joba ¼ Nag ColpivSVrankRel
Similar to joba ¼ Nag ColpivSVrankAbs. The rank revealing property of the initial QR
factorization is used to reveal (using the upper triangular factor) a gap �rþ1 < ��r in which
case the numerical rank is declared to be r. The SVD is computed with absolute error
bounds, but more accurately than with joba ¼ Nag ColpivSVrankAbs.

Constraint: joba ¼ Nag ColpivRrank, Nag ColpivRrankCond, Nag FullpivRrank,
Nag FullpivRrankCond, Nag ColpivSVrankAbs or Nag ColpivSVrankRel.

3: jobu – Nag_LeftVecsType Input

On entry: specifies options for computing the left singular vectors U .

jobu ¼ Nag LeftSpan
The first n left singular vectors (columns of U) are computed and returned in the array u.

jobu ¼ Nag LeftVecs
All m left singular vectors are computed and returned in the array u.

jobu ¼ Nag NotLeftWork
No left singular vectors are computed, but the array u (with pdu � m and second
dimension at least n) is available as workspace for computing right singular values. See the
description of u.
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jobu ¼ Nag NotLeftVecs
No left singular vectors are computed. u is not referenced.

Constraint: jobu ¼ Nag LeftSpan, Nag LeftVecs, Nag NotLeftWork or Nag NotLeftVecs.

4: jobv – Nag_RightVecsType Input

On entry: specifies options for computing the right singular vectors V .

jobv ¼ Nag RightVecs
the n right singular vectors (columns of V ) are computed and returned in the array v;
Jacobi rotations are not explicitly accumulated.

jobv ¼ Nag RightVecsJRots
the n right singular vectors (columns of V ) are computed and returned in the array v, but
they are computed as the product of Jacobi rotations. This option is allowed only if
jobu ¼ Nag LeftSpan or Nag LeftVecs, i.e., in computing the full SVD.

jobv ¼ Nag NotRightWork
No right singular values are computed, but the array v (with pdv � n and second dimension
at least n) is available as workspace for computing left singular values. See the description
of v.

jobv ¼ Nag NotRightVecs
No right singular vectors are computed. v is not referenced.

Constraints:

jobv ¼ Nag RightVecs, Nag RightVecsJRots, Nag NotRightWork or Nag NotRightVecs;
if jobu ¼ Nag NotLeftWork or Nag NotLeftVecs, jobv 6¼ Nag RightVecsJRots.

5: jobr – Nag_ZeroCols Input

On entry: specifies the conditions under which columns of A are to be set to zero. This effectively
specifies a lower limit on the range of singular values; any singular values below this limit are
(through column zeroing) set to zero. If A 6¼ 0 is scaled so that the largest column (in the
Euclidean norm) of cA is equal to the square root of the overflow threshold, then jobr allows the
function to kill columns of A whose norm in cA is less than

ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

(for
jobr ¼ Nag ZeroColsRestrict), or less than sfmin=� (otherwise). sfmin is the safe range
argument, as returned by function nag_real_safe_small_number (X02AMC).

jobr ¼ Nag ZeroColsNormal
Only set to zero those columns of A for which the norm of corresponding column of
cA < sfmin=�, that is, those columns that are effectively zero (to machine precision)
anyway. If the condition number of A is greater than the overflow threshold �, where � is
the value returned by nag_real_largest_number (X02ALC), you are recommended to use
function nag_dgesvj (f08kjc).

jobr ¼ Nag ZeroColsRestrict
Set to zero those columns of A for which the norm of the corresponding column of

cA <
ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

. This approximately represents a restricted range for � cAð Þ of
ffiffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

;
ffiffiffi
�
p� �

.

For computing the singular values in the full range from the safe minimum up to the overflow
threshold use nag_dgesvj (f08kjc).

Suggested value: jobr ¼ Nag ZeroColsRestrict

Constraint: jobr ¼ Nag ZeroColsNormal or Nag ZeroColsRestrict.

6: jobt – Nag_TransType Input

On entry: specifies, in the case n ¼ m, whether the function is permitted to use the transpose of A
for improved efficiency. If the matrix is square then the procedure may use transposed A if AT

seems to be better with respect to convergence. If the matrix is not square, jobt is ignored. The
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decision is based on two values of entropy over the adjoint orbit of ATA. See the descriptions of
work½5� and work½6�.
jobt ¼ Nag Trans

If n ¼ m, perform an entropy test and then transpose if the test indicates possibly faster
convergence of the Jacobi process if AT is taken as input. If A is replaced with AT, then the
row pivoting is included automatically.

jobt ¼ Nag NoTrans
No entropy test and no transposition is performed.

The option jobt ¼ Nag Trans can be used to compute only the singular values, or the full SVD
(U , � and V ). In the case where only one set of singular vectors (U or V ) is required, the caller
must still provide both u and v, as one of the matrices is used as workspace if the matrix A is
transposed. See the descriptions of u and v.

Constraint: jobt ¼ Nag Trans or Nag NoTrans.

7: jobp – Nag_Perturb Input

On entry: specifies whether the function should be allowed to introduce structured perturbations to
drown denormalized numbers. For details see Drmac and Veselic (2008a) and Drmac and Veselic
(2008b). For the sake of simplicity, these perturbations are included only when the full SVD or
only the singular values are requested.

jobp ¼ Nag PerturbOn
Introduce perturbation if A is found to be very badly scaled (introducing denormalized
numbers).

jobp ¼ Nag PerturbOff
Do not perturb.

Constraint: jobp ¼ Nag PerturbOn or Nag PerturbOff.

8: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

9: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: m � n � 0.

10: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: the contents of a are overwritten.

11: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.
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Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

12: sva½n� – double Output

On exit: the, possibly scaled, singular values of A.

The singular values of A are �i ¼ �sva½i � 1�, for i ¼ 1; 2; . . . ; n, where � ¼ work½0�=work½1�.
Normally � ¼ 1 and no scaling is required to obtain the singular values. However, if the largest
singular value of A overflows or if small singular values have been saved from underflow by
scaling the input matrix A, then � 6¼ 1.

If jobr ¼ Nag ZeroColsRestrict then some of the singular values may be returned as exact zeros
because they are below the numerical rank threshold or are denormalized numbers.

13: u½dim� – double Output

Note: the dimension, dim, of the array u must be at least

max 1;pdu�mð Þ when jobu ¼ Nag LeftVecs;
max 1;pdu� nð Þ when jobu ¼ Nag LeftSpan or Nag NotLeftWork and
order ¼ Nag ColMajor;
max 1;m� pduð Þ when jobu ¼ Nag LeftSpan or Nag NotLeftWork and
order ¼ Nag RowMajor;
1 otherwise.

The i; jð Þth element of the matrix U is stored in

u½ j� 1ð Þ � pduþ i� 1� when order ¼ Nag ColMajor;
u½ i� 1ð Þ � pduþ j� 1� when order ¼ Nag RowMajor.

On exit: if jobu ¼ Nag LeftSpan, u contains the m by n matrix of the left singular vectors.

If jobu ¼ Nag LeftVecs, u contains the m by m matrix of the left singular vectors, including an
orthonormal basis of the orthogonal complement of Range(A).

If jobu ¼ Nag NotLeftWork and (jobv ¼ Nag RightVecs and jobt ¼ Nag Trans and m ¼ n), then
u is used as workspace if the procedure replaces A with AT. In that case, V is computed in u as
left singular vectors of AT and then copied back to the array v.

If jobu ¼ Nag NotLeftVecs, u is not referenced.

14: pdu – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array u.

Constraints:

if order ¼ Nag ColMajor,

if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1;mð Þ;
otherwise pdu � 1.;

if order ¼ Nag RowMajor,

if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1; nð Þ;
otherwise pdu � 1..
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15: v½dim� – double Output

Note: the dimension, dim, of the array v must be at least

max 1;pdv� nð Þ when jobv ¼ Nag RightVecs, Nag RightVecsJRots or
Nag NotRightWork;
1 otherwise.

The i; jð Þth element of the matrix V is stored in

v½ j� 1ð Þ � pdvþ i� 1� when order ¼ Nag ColMajor;
v½ i� 1ð Þ � pdvþ j� 1� when order ¼ Nag RowMajor.

On exit: if jobv ¼ Nag RightVecs or Nag RightVecsJRots, v contains the n by n matrix of the
right singular vectors.

If jobv ¼ Nag NotRightWork and (jobu ¼ Nag LeftSpan and jobt ¼ Nag Trans and m ¼ n), then
v is used as workspace if the procedure replaces A with AT. In that case, U is computed in v as
right singular vectors of AT and then copied back to the array u.

If jobv ¼ Nag NotRightVecs, v is not referenced.

16: pdv – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array v.

Constraints:

if jobv ¼ Nag RightVecs, Nag RightVecsJRots or Nag NotRightWork, pdv � max 1;nð Þ;
otherwise pdv � 1.

17: work½7� – double Output

On exit: contains information about the completed job.

work½0�
� ¼ work½0�=work½1� is the scaling factor such that �i ¼ �sva½i � 1�, for i ¼ 1; 2; . . . ; n are
the computed singular values of A. (See the description of sva.)

work½1�
See the description of work½0�.

work½2�
sconda, an estimate for the condition number of column equilibrated A (if
joba ¼ Nag ColpivRrankCond or Nag FullpivRrankCond). sconda is an estimate offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RTRð Þ�1
�� ��

1

� �r
. I t is computed using nag_dpocon (f07fgc) . I t sat isfies

n�
1
4 � sconda � R�1

�� ��
2
� n1

4 � sconda where R is the triangular factor from the QR

factorization of A. However, if R is truncated and the numerical rank is determined to be
strictly smaller than n, sconda is returned as �1, thus indicating that the smallest singular
values might be lost.

If full SVD is needed, and you are familiar with the details of the method, the following two
condition numbers are useful for the analysis of the algorithm.

work½3�
An estimate of the scaled condition number of the triangular factor in the first QR
factorization.

work½4�
An estimate of the scaled condition number of the triangular factor in the second QR
factorization.
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The following two parameters are computed if jobt ¼ Nag Trans.

work½5�
The entropy of ATA: this is the Shannon entropy of diagATA= traceATA taken as a point
in the probability simplex.

work½6�
The entropy of AAT.

18: iwork½3� – Integer Output

On exit: contains information about the completed job.

iwork½0�
The numerical rank of A determined after the initial QR factorization with pivoting. See the
descriptions of joba and jobr.

iwork½1�
The number of computed nonzero singular values.

iwork½2�
If nonzero, a warning message: If iwork½2� ¼ 1 then some of the column norms of A were
denormalized (tiny) numbers. The requested high accuracy is not warranted by the data.

19: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

nag_dgejsv (f08khc) did not converge in the allowed number of iterations (30). The computed
values might be inaccurate.

NE_ENUM_INT_2

On entry, jobu ¼ valueh i, m ¼ valueh i and pdu ¼ valueh i.
Constraint: if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1;mð Þ;
otherwise pdu � 1.

On entry, jobv ¼ valueh i, pdv ¼ valueh i, n ¼ valueh i.
Constraint: if jobv ¼ Nag RightVecs, Nag RightVecsJRots or Nag NotRightWork,
pdv � max 1;nð Þ;
otherwise pdv � 1.

On entry, pdv ¼ valueh i, jobv ¼ valueh i and n ¼ valueh i.
Constraint: if jobv ¼ Nag RightVecs, Nag RightVecsJRots or Nag NotRightWork,
pdv � max 1;nð Þ;
otherwise pdv � 1.
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NE_ENUM_INT_3

On entry, jobu ¼ valueh i, pdu ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: if jobu ¼ Nag LeftVecs, pdu � max 1;mð Þ;
if jobu ¼ Nag LeftSpan or Nag NotLeftWork, pdu � max 1; nð Þ;
otherwise pdu � 1.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, pda ¼ valueh i.
Constraint: pda > 0.

On entry, pdu ¼ valueh i.
Constraint: pdu > 0.

On entry, pdv ¼ valueh i.
Constraint: pdv > 0.

NE_INT_2

On entry, m ¼ valueh i and n ¼ valueh i.
Constraint: m � n � 0.

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

nag_dgejsv (f08khc) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

nag_dgejsv (f08khc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

nag_dgejsv (f08khc) implements a preconditioned Jacobi SVD algorithm. It uses nag_dgeqrf (f08aec),
nag_dgelqf (f08ahc) and nag_dgeqp3 (f08bfc) as preprocessors and preconditioners. Optionally, an
additional row pivoting can be used as a preprocessor, which in some cases results in much higher
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accuracy. An example is matrix A with the structure A ¼ D1CD2, where D1, D2 are arbitrarily ill-
conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the
first QR factorizations provides accuracy dependent on the condition number of C, and independent of
D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.
Further, if A can be written as A ¼ BD, with well-conditioned B and some diagonal D, then the high
accuracy is guaranteed, both theoretically and in software, independent of D.

10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21

1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30

0:62 �7:39 1:03 �2:57

0
BBBBB@

1
CCCCCA
;

together with the condition number of A and approximate error bounds for the computed singular values
and vectors.

10.1 Program Text

/* nag_dgejsv (f08khc) Example Program.
*
* Copyright 2011 Numerical Algorithms Group.
*
* Mark 23, 2011.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx02.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double eps, serrbd;
Integer exit_status = 0;
Integer pda, pdu, pdv;
Integer i, j, m, n, n_uvecs, n_vvecs;
/* Arrays */
double *a = 0, *rcondu = 0, *rcondv = 0, *s = 0, *u = 0, *v = 0;
double work[7];
Integer iwork[3];
char nag_enum_arg[40];

/* Nag Types */
Nag_OrderType order;
Nag_Preprocess joba;
Nag_LeftVecsType jobu;
Nag_RightVecsType jobv;
Nag_ZeroCols jobr;
Nag_TransType jobt;
Nag_Perturb jobp;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I-1]

order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J-1]

order = Nag_RowMajor;
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#endif

INIT_FAIL(fail);

printf("nag_dgejsv (f08khc) Example Program Results\n\n");

jobu = Nag_LeftSpan;
jobv = Nag_RightVecs;
jobr = Nag_ZeroColsRestrict;
jobt = Nag_NoTrans;
jobp = Nag_PerturbOff;

/* Skip heading in data file*/
scanf("%*[^\n]");
scanf("%ld%ld%*[^\n]", &m, &n);

if (n < 0 || m < n)
{

printf("Invalid n or nrhs\n");
exit_status = 1;
goto END;;

}

/* Read Nag type arguments by name and convert to value */
scanf(" %39s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/

joba = (Nag_Preprocess) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobu = (Nag_LeftVecsType) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobv = (Nag_RightVecsType) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobr = (Nag_ZeroCols) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobt = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
scanf(" %39s%*[^\n]", nag_enum_arg);
jobp = (Nag_Perturb) nag_enum_name_to_value(nag_enum_arg);

/* Size of u and v depends on some of the above Nag type arguments. */
n_uvecs = 1;
if (jobu==Nag_LeftVecs) {

n_uvecs = m;
} else if (jobu==Nag_LeftSpan) {

n_uvecs = n;
} else if (jobu==Nag_NotLeftWork && jobv==Nag_RightVecs &&

jobt==Nag_Trans && m==n) {
n_uvecs = m;

}
if (jobv==Nag_NotRightVecs) {

n_vvecs = 1;
} else {

n_vvecs = n;
}

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdu = m;
pdv = n;

#else
pda = n;
pdu = n_uvecs;
pdv = n_vvecs;

#endif

if (!(a = NAG_ALLOC(m*n, double)) ||
!(rcondu = NAG_ALLOC(m, double)) ||
!(rcondv = NAG_ALLOC(m, double)) ||
!(s = NAG_ALLOC(n, double)) ||
!(u = NAG_ALLOC(m*n_uvecs, double)) ||
!(v = NAG_ALLOC(n_vvecs*n_vvecs, double)))
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{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read the m by n matrix A from data file*/
for (i = 1; i <= m; i++)

for (j = 1; j <= n; j++) scanf("%lf", &A(i, j));
scanf("%*[^\n]");

/* nag_dgejsv (f08khc)
* Compute the singular values and left and right singular vectors
* of A (A = U*S*V^T, m>=n).
*/

nag_dgejsv(order, joba, jobu, jobv, jobr, jobt, jobp, m, n, a, pda, s, u, pdu,
v, pdv, work, iwork, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_dgejsv (f08khc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Get the machine precision, eps and compute the approximate
* error bound for the computed singular values. Note that for
* the 2-norm, s[0] = norm(A).
*/

eps = nag_machine_precision;
serrbd = eps * s[0];

/* Print (possibly scaled) singular values. */
if (fabs(work[0] - work[1]) < 2.0 * eps)

{
/* No scaling required*/
printf("Singular values\n");
for (j = 0; j < n; j++) printf("%8.4f", s[j]);

}
else

{
printf("Scaled singular values\n");
for (j = 0; j < n; j++) printf("%8.4f", s[j]);
printf("\nFor true singular values, multiply by a/b,\n");
printf("where a = %f and b = %f", work[0], work[1]);

}
printf("\n\n");

/* Print left and right (spanning) singular vectors, if requested. using
* nag_gen_real_mat_print (x04cac)
* Print real general matrix (easy-to-use)
*/

if (jobu==Nag_LeftVecs || jobu==Nag_LeftSpan) {
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n, u,

pdu, "Left singular vectors", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}
if (jobv==Nag_RightVecs || jobv==Nag_RightVecsJRots) {

printf("\n");
fflush(stdout);
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, v,

pdv, "Right singular vectors", 0, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
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}

/* nag_ddisna (f08flc)
* Estimate reciprocal condition numbers for the singular vectors.
*/

nag_ddisna(Nag_LeftSingVecs, m, n, s, rcondu, &fail);
if (fail.code == NE_NOERROR)

nag_ddisna(Nag_RightSingVecs, m, n, s, rcondv, &fail);
if (fail.code != NE_NOERROR)

{
printf("Error from nag_ddisna (f08flc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

if (joba==Nag_ColpivRrankCond || joba==Nag_FullpivRrankCond) {
printf("\n\nEstimate of the condition number of column equilibrated A\n");
printf("%11.1e", work[2]);

}

/* Print the approximate error bounds for the singular values and vectors. */
printf("\n\nError estimate for the singular values\n%11.1e", serrbd);

printf("\n\nError estimates for left singular vectors\n");
for (i = 0; i < n; i++) printf("%11.1e", serrbd/rcondu[i]);

printf("\n\nError estimates for right singular vectors\n");
for (i = 0; i < n; i++) printf("%11.1e", serrbd/rcondv[i]);
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(rcondu);
NAG_FREE(rcondv);
NAG_FREE(s);
NAG_FREE(u);
NAG_FREE(v);

return exit_status;
}

10.2 Program Data

nag_dgejsv (f08khc) Example Program Data

6 4 : m and n

Nag_ColpivRrankCond : joba
Nag_LeftSpan : jobu
Nag_RightVecs : jobv
Nag_ZeroColsRestrict : jobr
Nag_NoTrans : jobt
Nag_PerturbOff : jobp

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 : matrix a

10.3 Program Results

nag_dgejsv (f08khc) Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4
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1 0.2774 -0.6003 -0.1277 0.1323
2 0.2020 -0.0301 0.2805 0.7034
3 0.2918 0.3348 0.6453 0.1906
4 -0.0938 -0.3699 0.6781 -0.5399
5 -0.4213 0.5266 0.0413 -0.0575
6 0.7816 0.3353 -0.1645 -0.3957

Right singular vectors
1 2 3 4

1 0.1921 -0.8030 0.0041 -0.5642
2 -0.8794 -0.3926 -0.0752 0.2587
3 0.2140 -0.2980 0.7827 0.5027
4 -0.3795 0.3351 0.6178 -0.6017

Estimate of the condition number of column equilibrated A
9.0e+00

Error estimate for the singular values
1.1e-15

Error estimates for left singular vectors
1.8e-16 4.8e-16 1.3e-15 2.2e-15

Error estimates for right singular vectors
1.8e-16 4.8e-16 1.3e-15 1.3e-15
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