NAG Library Function Document

nag_zsteqr (f08jsc)

1 Purpose

nag_zsteqr (f08jsc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex Hermitian matrix which has been reduced to tridiagonal form.

2 Specification

3 Description

nag_zsteqr (f08jsc) computes all the eigenvalues and, optionally, all the eigenvectors of a real symmetric tridiagonal matrix T. In other words, it can compute the spectral factorization of T as

$$T = Z\Lambda Z^{\mathrm{T}},$$

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues λ_i , and Z is the orthogonal matrix whose columns are the eigenvectors z_i . Thus

$$Tz_i = \lambda_i z_i, \quad i = 1, 2, \dots, n.$$

The function stores the real orthogonal matrix Z in a complex array, so that it may also be used to compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been reduced to tridiagonal form T:

$$A = QTQ^{\rm H}, \text{ where } Q \text{ is unitary}$$
$$= (QZ)\Lambda(QZ)^{\rm H}.$$

In this case, the matrix Q must be formed explicitly and passed to nag_zsteqr (f08jsc), which must be called with **compz** = Nag_UpdateZ. The functions which must be called to perform the reduction to tridiagonal form and form Q are:

full matrix	nag_zhetrd (f08fsc) and nag_zungtr (f08ftc)
full matrix, packed storage	nag_zhptrd (f08gsc) and nag_zupgtr (f08gtc)
band matrix	nag_zhbtrd (f08hsc) with $vect = Nag_FormQ$.

nag_zsteqr (f08jsc) uses the implicitly shifted QR algorithm, switching between the QR and QL variants in order to handle graded matrices effectively (see Greenbaum and Dongarra (1980)). The eigenvectors are normalized so that $||z_i||_2 = 1$, but are determined only to within a complex factor of absolute value 1.

If only the eigenvalues of T are required, it is more efficient to call nag_dsterf (f08jfc) instead. If T is positive definite, small eigenvalues can be computed more accurately by nag_zpteqr (f08juc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Greenbaum A and Dongarra J J (1980) Experiments with QR/QL methods for the symmetric triangular eigenproblem *LAPACK Working Note No. 17 (Technical Report CS-89-92)* University of Tennessee, Knoxville

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

5 Arguments

1: **order** – Nag_OrderType

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by $order = Nag_RowMajor$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **compz** – Nag_ComputeZType

On entry: indicates whether the eigenvectors are to be computed.

compz = Nag_NotZ

Only the eigenvalues are computed (and the array z is not referenced).

compz = Nag_InitZ

The eigenvalues and eigenvectors of T are computed (and the array z is initialized by the function).

compz = Nag_UpdateZ

The eigenvalues and eigenvectors of A are computed (and the array z must contain the matrix Q on entry).

Constraint: **compz** = Nag_NotZ, Nag_UpdateZ or Nag_InitZ.

3: **n** – Integer

On entry: n, the order of the matrix T.

Constraint: $\mathbf{n} \geq 0$.

4: $\mathbf{d}[dim] - \mathbf{double}$

Note: the dimension, *dim*, of the array **d** must be at least $max(1, \mathbf{n})$.

On entry: the diagonal elements of the tridiagonal matrix T.

On exit: the *n* eigenvalues in ascending order, unless fail.code = NE_CONVERGENCE (in which case see Section 6).

5: $\mathbf{e}[dim] - double$

Note: the dimension, dim, of the array e must be at least max(1, n - 1).

On entry: the off-diagonal elements of the tridiagonal matrix T.

On exit: e is overwritten.

6: $\mathbf{z}[dim] - \text{Complex}$

Note: the dimension, dim, of the array z must be at least

 $max(1, pdz \times n)$ when $compz = Nag_UpdateZ$ or Nag_InitZ and $order = Nag_ColMajor$; $max(1, \times pdz)$ when $compz = Nag_UpdateZ$ or Nag_InitZ and $order = Nag_RowMajor$;

NAG Library Manual

Input

Input/Output

Input/Output

Input/Output

Input

Input

1 when $compz = Nag_NotZ$.

The (i, j)th element of the matrix Z is stored in

 $\mathbf{z}[(j-1) \times \mathbf{pdz} + i - 1]$ when $\mathbf{order} = \text{Nag_ColMajor};$ $\mathbf{z}[(i-1) \times \mathbf{pdz} + j - 1]$ when $\mathbf{order} = \text{Nag_RowMajor}.$

On entry: if $compz = Nag_UpdateZ$, z must contain the unitary matrix Q from the reduction to tridiagonal form.

If $compz = Nag_InitZ$, z need not be set.

On exit: if **compz** = Nag_InitZ or Nag_UpdateZ, the *n* required orthonormal eigenvectors stored as columns of Z; the *i*th column corresponds to the *i*th eigenvalue, where i = 1, 2, ..., n, unless **fail.code** = NE_CONVERGENCE.

If $compz = Nag_NotZ$, z is not referenced.

7: **pdz** – Integer

Input

Input/Output

On entry: the stride separating row or column elements (depending on the value of order) in the array z.

Constraints:

if **order** = Nag_ColMajor,

 $\label{eq:linear} \begin{array}{l} \mbox{if } \textbf{compz} = Nag_InitZ \mbox{ or } Nag_UpdateZ, \mbox{ } \textbf{pdz} \geq max(1, \textbf{n}); \\ \mbox{if } \textbf{compz} = Nag_NotZ, \mbox{ } \textbf{pdz} \geq 1.; \\ \mbox{if } \textbf{order} = Nag_RowMajor, \end{array}$

if $compz = Nag_UpdateZ$ or Nag_InitZ , $pdz \ge max(1, n)$; if $compz = Nag_NotZ$, $pdz \ge 1$..

8: fail – NagError *

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_CONVERGENCE

The algorithm has failed to find all the eigenvalues after a total of $30 \times \mathbf{n}$ iterations. In this case, **d** and **e** contain on exit the diagonal and off-diagonal elements, respectively, of a tridiagonal matrix unitarily similar to *T*. $\langle value \rangle$ off-diagonal elements have not converged to zero.

NE_ENUM_INT_2

On entry, $compz = \langle value \rangle$, $pdz = \langle value \rangle$ and $\mathbf{n} = \langle value \rangle$. Constraint: if $compz = Nag_InitZ$ or $Nag_UpdateZ$, $pdz \ge max(1, \mathbf{n})$; if $compz = Nag_NotZ$, $pdz \ge 1$.

On entry, $compz = \langle value \rangle$, $pdz = \langle value \rangle$, $n = \langle value \rangle$. Constraint: if $compz = Nag_UpdateZ$ or Nag_InitZ, $pdz \ge max(1, n)$; if $compz = Nag_NotZ$, $pdz \ge 1$.

f08jsc

NE_INT

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \geq 0$.

On entry, $\mathbf{pdz} = \langle value \rangle$. Constraint: $\mathbf{pdz} > 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix (T + E), where

 $||E||_2 = O(\epsilon) ||T||_2,$

and ϵ is the *machine precision*.

If λ_i is an exact eigenvalue and $\tilde{\lambda}_i$ is the corresponding computed value, then

$$\left|\tilde{\lambda}_i - \lambda_i\right| \le c(n)\epsilon \|T\|_2,$$

where c(n) is a modestly increasing function of n.

If z_i is the corresponding exact eigenvector, and \tilde{z}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{z}_i, z_i)$ between them is bounded as follows:

$$\theta(\tilde{z}_i, z_i) \le \frac{c(n)\epsilon \|T\|_2}{\min_{i \ne j} |\lambda_i - \lambda_j|}.$$

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

8 Parallelism and Performance

nag_zsteqr (f08jsc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

nag_zsteqr (f08jsc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is typically about $24n^2$ if **compz** = Nag_NotZ and about $14n^3$ if **compz** = Nag_UpdateZ or Nag_InitZ, but depends on how rapidly the algorithm converges. When **compz** = Nag_NotZ, the operations are all performed in scalar mode; the additional operations to compute the eigenvectors when **compz** = Nag_UpdateZ or Nag_InitZ can be vectorized and on some machines may be performed much faster.

The real analogue of this function is nag_dsteqr (f08jec).

See Section 10 in nag_zungtr (f08ftc), nag_zupgtr (f08gtc) or nag_zhbtrd (f08hsc), which illustrate the use of this function to compute the eigenvalues and eigenvectors of a full or band Hermitian matrix.