NAG Library Function Document nag ztpmqrt (f08bqc)

1 Purpose

nag_ztpmqrt (f08bqc) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from a QR factorization computed by nag ztpqrt (f08bpc).

2 Specification

3 Description

nag_ztpmqrt (f08bqc) is intended to be used after a call to nag_ztpqrt (f08bpc) which performs a QR factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a pentagonal matrix B. The unitary matrix Q is represented as a product of elementary reflectors.

This function may be used to form the matrix products

$$QC, Q^{H}C, CQ$$
 or CQ^{H} ,

where the complex rectangular m_c by n_c matrix C is split into component matrices C_1 and C_2 .

If Q is being applied from the left (QC or $Q^{H}C$) then

$$C = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

where C_1 is k by n_c , C_2 is m_v by n_c , $m_c = k + m_v$ is fixed and m_v is the number of rows of the matrix V containing the elementary reflectors (i.e., \mathbf{m} as passed to nag_ztpqrt (f08bpc)); the number of columns of V is n_v (i.e., \mathbf{n} as passed to nag_ztpqrt (f08bpc)).

If Q is being applied from the right (CQ or CQ^H) then

$$C = (C_1 \quad C_2)$$

where C_1 is m_c by k, and C_2 is m_c by m_v and $n_c = k + m_v$ is fixed.

The matrices C_1 and C_2 are overwriten by the result of the matrix product.

A common application of this routine is in updating the solution of a linear least squares problem as illustrated in Section 10 in nag ztpqrt (f08bpc).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

Mark 24 f08bqc.1

f08bqc NAG Library Manual

5 Arguments

1: **order** – Nag OrderType

Input

On entry: the **order** argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.

Constraint: **order** = Nag_RowMajor or Nag_ColMajor.

2: **side** – Nag SideType

Input

On entry: indicates how Q or Q^H is to be applied to C.

side = Nag_LeftSide

Q or Q^{H} is applied to C from the left.

side = Nag_RightSide

Q or Q^{H} is applied to C from the right.

Constraint: side = Nag_LeftSide or Nag_RightSide.

3: **trans** – Nag TransType

Input

On entry: indicates whether Q or Q^{H} is to be applied to C.

trans = Nag_NoTrans

Q is applied to C.

trans = Nag_ConjTrans

 $Q^{\rm H}$ is applied to C.

Constraint: trans = Nag_NoTrans or Nag_ConjTrans.

4: **m** – Integer

Input

On entry: the number of rows of the matrix C_2 , that is,

if **side** = Nag_LeftSide

then m_v , the number of rows of the matrix V;

if **side** = Nag_RightSide

then m_c , the number of rows of the matrix C.

Constraint: $\mathbf{m} \geq 0$.

5: **n** − Integer

Input

On entry: the number of columns of the matrix C_2 , that is,

if side = Nag_LeftSide

then n_c , the number of columns of the matrix C;

if **side** = Nag_RightSide

then n_v , the number of columns of the matrix V.

Constraint: $\mathbf{n} \geq 0$.

6: \mathbf{k} – Integer

Input

On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: $\mathbf{k} \geq 0$.

f08bqc.2 Mark 24

7: \mathbf{l} – Integer

On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix V, passed (as **b**) in a previous call to nag_ztpqrt (f08bpc). This must be the same value used in the previous call to nag_ztpqrt (f08bpc) (see **l** in nag_ztpqrt (f08bpc)).

Constraint: $0 \le l \le k$.

8: **nb** – Integer Input

On entry: nb, the blocking factor used in a previous call to nag_ztpqrt (f08bpc) to compute the QR factorization of a triangular-pentagonal matrix containing composite matrices A and B.

Constraints:

```
\mathbf{nb} \ge 1; if \mathbf{k} > 0, \mathbf{nb} \le \mathbf{k}.
```

9: $\mathbf{v}[dim] - \text{const Complex}$

Input

Note: the dimension, dim, of the array v must be at least

```
\max(1, \mathbf{pdv} \times \mathbf{k}) when \mathbf{order} = \text{Nag\_ColMajor}; \max(1, \mathbf{m} \times \mathbf{pdv}) when \mathbf{order} = \text{Nag\_RowMajor} and \mathbf{side} = \text{Nag\_LeftSide}; \max(1, \mathbf{n} \times \mathbf{pdv}) when \mathbf{order} = \text{Nag\_RowMajor} and \mathbf{side} = \text{Nag\_RightSide}.
```

The (i, j)th element of the matrix V is stored in

```
\mathbf{v}[(j-1) \times \mathbf{pdv} + i - 1] when \mathbf{order} = \text{Nag\_ColMajor}; \mathbf{v}[(i-1) \times \mathbf{pdv} + j - 1] when \mathbf{order} = \text{Nag\_RowMajor}.
```

On entry: the m_v by n_v matrix V; this should remain unchanged from the array **b** returned by a previous call to nag ztpqrt (f08bpc).

10: **pdv** – Integer

On entry: the stride separating row or column elements (depending on the value of **order**) in the array v.

Constraints:

```
\begin{split} \text{if order} &= \text{Nag\_ColMajor}, \\ &\quad \text{if side} &= \text{Nag\_LeftSide}, \ \textbf{pdv} \geq \text{max}(1, \textbf{m}); \\ &\quad \text{if side} &= \text{Nag\_RightSide}, \ \textbf{pdv} \geq \text{max}(1, \textbf{n}).; \\ &\quad \text{if order} &= \text{Nag\_RowMajor}, \ \textbf{pdv} \geq \text{max}(1, \textbf{k}). \end{split}
```

11: $\mathbf{t}[dim]$ – const Complex

Input

Note: the dimension, dim, of the array t must be at least

```
max(1, pdt \times k) when order = Nag\_ColMajor;

max(1, nb \times pdt) when order = Nag\_RowMajor.
```

The (i, j)th element of the matrix T is stored in

```
\mathbf{t}[(j-1) \times \mathbf{pdt} + i - 1] when \mathbf{order} = \text{Nag\_ColMajor}; \mathbf{t}[(i-1) \times \mathbf{pdt} + j - 1] when \mathbf{order} = \text{Nag\_RowMajor}.
```

On entry: this must remain unchanged from a previous call to nag_ztpqrt (f08bpc) (see t in nag ztpqrt (f08bpc)).

12: **pdt** – Integer Input

On entry: the stride separating row or column elements (depending on the value of **order**) in the array \mathbf{t} .

Mark 24 f08bqc.3

f08bqc NAG Library Manual

Constraints: if order = Nag_ColMajor, pdt \geq nb; if order = Nag_RowMajor, pdt \geq max(1, k).

```
13: \mathbf{c1}[dim] – Complex
```

Input/Output

Note: the dimension, dim, of the array c1 must be at least

```
\max(1, \mathbf{pdc1} \times \mathbf{n}) when \mathbf{side} = \text{Nag\_LeftSide} and \mathbf{order} = \text{Nag\_ColMajor}; \max(1, \mathbf{k} \times \mathbf{pdc1}) when \mathbf{side} = \text{Nag\_LeftSide} and \mathbf{order} = \text{Nag\_RowMajor}; \max(1, \mathbf{pdc1} \times \mathbf{k}) when \mathbf{side} = \text{Nag\_RightSide} and \mathbf{order} = \text{Nag\_ColMajor}; \max(1, \mathbf{m} \times \mathbf{pdc1}) when \mathbf{side} = \text{Nag\_RightSide} and \mathbf{order} = \text{Nag\_RowMajor}.
```

On entry: C_1 , the first part of the composite matrix C.

if side = Nag_LeftSide

then c1 contains the first k rows of C;

if **side** = Nag_RightSide

then c1 contains the first k columns of C.

On exit: c1 is overwritten by the corresponding block of QC or $Q^{H}C$ or CQ or CQ^{H} .

14: **pdc1** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of **order**) in the array **c1**.

Constraints:

```
\begin{split} &\text{if order} = \text{Nag\_ColMajor}, \\ &\text{if side} = \text{Nag\_LeftSide}, \ \textbf{pdc1} \geq \max(1, \textbf{k}); \\ &\text{if side} = \text{Nag\_RightSide}, \ \textbf{pdc1} \geq \max(1, \textbf{m}).; \\ &\text{if order} = \text{Nag\_RowMajor}, \\ &\text{if side} = \text{Nag\_LeftSide}, \ \textbf{pdc1} \geq \max(1, \textbf{n}); \\ &\text{if side} = \text{Nag\_RightSide}, \ \textbf{pdc1} \geq \max(1, \textbf{k}).. \end{split}
```

15: $\mathbf{c2}[dim]$ – Complex

Input/Output

Note: the dimension, dim, of the array c2 must be at least

```
max(1, pdc2 \times n) when order = Nag\_ColMajor;

max(1, m \times pdc2) when order = Nag\_RowMajor.
```

On entry: C_2 , the second part of the composite matrix C.

if side = Nag_LeftSide

then **c2** contains the remaining m_v rows of C;

if **side** = Nag_RightSide

then **c2** contains the remaining m_v columns of C;

On exit: c2 is overwritten by the corresponding block of QC or $Q^{H}C$ or CQ or CQ^{H} .

16: **pdc2** – Integer

Input

On entry: the stride separating row or column elements (depending on the value of **order**) in the array **c2**.

Constraints:

```
if order = Nag_ColMajor, pdc2 \ge max(1, m); if order = Nag_RowMajor, pdc2 \ge max(1, n).
```

f08bqc.4 Mark 24

17: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE ALLOC FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE_ENUM_INT_3

```
On entry, \mathbf{side} = \langle value \rangle, \mathbf{k} = \langle value \rangle, \mathbf{m} = \langle value \rangle and \mathbf{pdc1} = \langle value \rangle. Constraint: if \mathbf{side} = \mathrm{Nag\_LeftSide}, \mathbf{pdc1} \geq \mathrm{max}(1, \mathbf{k}); if \mathbf{side} = \mathrm{Nag\_RightSide}, \mathbf{pdc1} \geq \mathrm{max}(1, \mathbf{m}).

On entry, \mathbf{side} = \langle value \rangle, \mathbf{m} = \langle value \rangle, \mathbf{n} = \langle value \rangle and \mathbf{pdv} = \langle value \rangle. Constraint: if \mathbf{side} = \mathrm{Nag\_LeftSide}, \mathbf{pdv} \geq \mathrm{max}(1, \mathbf{m}); if \mathbf{side} = \mathrm{Nag\_RightSide}, \mathbf{pdv} \geq \mathrm{max}(1, \mathbf{n}).

On entry, \mathbf{side} = \langle value \rangle, \mathbf{pdc1} = \langle value \rangle, \mathbf{n} = \langle value \rangle and \mathbf{k} = \langle value \rangle. Constraint: if \mathbf{side} = \mathrm{Nag\_LeftSide}, \mathbf{pdc1} \geq \mathrm{max}(1, \mathbf{n}); if \mathbf{side} = \mathrm{Nag\_RightSide}, \mathbf{pdc1} \geq \mathrm{max}(1, \mathbf{k}).
```

NE INT

```
On entry, \mathbf{k} = \langle value \rangle.
Constraint: \mathbf{k} \geq 0.
On entry, \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{m} \geq 0.
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
```

NE_INT_2

```
On entry, \mathbf{l} = \langle value \rangle and \mathbf{k} = \langle value \rangle. Constraint: 0 \le \mathbf{l} \le \mathbf{k}.

On entry, \mathbf{m} = \langle value \rangle and \mathbf{pdc2} = \langle value \rangle. Constraint: \mathbf{pdc2} \ge \max(1, \mathbf{m}).

On entry, \mathbf{nb} = \langle value \rangle and \mathbf{k} = \langle value \rangle. Constraint: \mathbf{nb} \ge 1 and if \mathbf{k} > 0, \mathbf{nb} \le \mathbf{k}.

On entry, \mathbf{pdc2} = \langle value \rangle and \mathbf{n} = \langle value \rangle. Constraint: \mathbf{pdc2} \ge \max(1, \mathbf{n}).

On entry, \mathbf{pdt} = \langle value \rangle and \mathbf{k} = \langle value \rangle. Constraint: \mathbf{pdt} \ge \max(1, \mathbf{k}).

On entry, \mathbf{pdt} = \langle value \rangle and \mathbf{nb} = \langle value \rangle. Constraint: \mathbf{pdt} \ge \mathbf{nb}.

On entry, \mathbf{pdv} = \langle value \rangle and \mathbf{k} = \langle value \rangle. Constraint: \mathbf{pdv} \ge \mathbf{nb}.
```

Mark 24 f08bqc.5

f08bqc NAG Library Manual

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$||E||_2 = O(\epsilon)||C||_2$$

where ϵ is the *machine precision*.

8 Parallelism and Performance

nag_ztpmqrt (f08bqc) is not threaded by NAG in any implementation.

nag_ztpmqrt (f08bqc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately 2nk(2m-k) if $side = Nag_LeftSide$ and 2mk(2n-k) if $side = Nag_RightSide$.

The real analogue of this function is nag dtpmqrt (f08bcc).

10 Example

See Section 10 in nag_ztpqrt (f08bpc).

f08bqc.6 (last) Mark 24