NAG Library Function Document

nag_ztpmqrt (f08bqc)

1 Purpose

nag_ztpmqrt (f08bqc) multiplies an arbitrary complex matrix C by the complex unitary matrix Q from a $Q R$ factorization computed by nag_ztpqrt (f08bpc).

2 Specification

```
#include <nag.h>
#include <nagf08.h>
void nag_ztpmqrt (Nag_OrderType order, Nag_SideType side,
    Nag_TransType trans, Integer m, Integer n, Integer k, Integer l,
    Integer nb, const Complex v[], Integer pdv, const Complex t[],
    Integer pdt, Complex c1[], Integer pdc1, Complex c2[], Integer pdc2,
    NagError *fail)
```


3 Description

nag_ztpmqrt (f08bqc) is intended to be used after a call to nag_ztpqrt (f08bpc) which performs a $Q R$ factorization of a triangular-pentagonal matrix containing an upper triangular matrix A over a pentagonal matrix B. The unitary matrix Q is represented as a product of elementary reflectors.

This function may be used to form the matrix products

$$
Q C, Q^{\mathrm{H}} C, C Q \text { or } C Q^{\mathrm{H}},
$$

where the complex rectangular m_{c} by n_{c} matrix C is split into component matrices C_{1} and C_{2}.
If Q is being applied from the left $\left(Q C\right.$ or $\left.Q^{\mathrm{H}} C\right)$ then

$$
C=\binom{C_{1}}{C_{2}}
$$

where C_{1} is k by n_{c}, C_{2} is m_{v} by $n_{c}, m_{c}=k+m_{v}$ is fixed and m_{v} is the number of rows of the matrix V containing the elementary reflectors (i.e., \mathbf{m} as passed to nag_ztpqrt (f08bpc)); the number of columns

If Q is being applied from the right $\left(C Q\right.$ or $\left.C Q^{\mathrm{H}}\right)$ then

$$
C=\left(\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right)
$$

where C_{1} is m_{c} by k, and C_{2} is m_{c} by m_{v} and $n_{c}=k+m_{v}$ is fixed.
The matrices C_{1} and C_{2} are overwriten by the result of the matrix product.
A common application of this routine is in updating the solution of a linear least squares problem as illustrated in Section 10 in nag_ztpqrt (f08bpc).

4 References

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: order - Nag_OrderType
Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order $=$ Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order $=$ Nag_RowMajor or Nag_ColMajor.
2: \quad side - Nag_SideType
Input
On entry: indicates how Q or Q^{H} is to be applied to C.
side $=$ Nag_LeftSide
Q or Q^{H} is applied to C from the left.
side $=$ Nag_RightSide
Q or Q^{H} is applied to C from the right.
Constraint: side $=$ Nag_LeftSide or Nag_RightSide.
3: trans - Nag_TransType Input
On entry: indicates whether Q or Q^{H} is to be applied to C.
$\boldsymbol{t r a n s}=$ Nag_NoTrans
Q is applied to C.
trans $=$ Nag_ConjTrans
Q^{H} is applied to C.
Constraint: $\boldsymbol{\operatorname { t r a n s }}=$ Nag_NoTrans or Nag_ConjTrans.
4: $\quad \mathbf{m}$ - Integer
Input
On entry: the number of rows of the matrix C_{2}, that is,
if side $=$ Nag_LeftSide
then m_{v}, the number of rows of the matrix V;
if side $=$ Nag_RightSide
then m_{c}, the number of rows of the matrix C.
Constraint: $\mathbf{m} \geq 0$.
5: $\quad \mathbf{n}$ - Integer
Input
On entry: the number of columns of the matrix C_{2}, that is,
if side $=$ Nag_LeftSide
then n_{c}, the number of columns of the matrix C;
if side $=$ Nag_RightSide
then n_{v}, the number of columns of the matrix V.
Constraint: $\mathbf{n} \geq 0$.
\mathbf{k} - Integer
Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: $\mathbf{k} \geq 0$.

7: $\quad \mathbf{l}$ - Integer
Input
On entry: l, the number of rows of the upper trapezoidal part of the pentagonal composite matrix V, passed (as b) in a previous call to nag_ztpqrt (f08bpc). This must be the same value used in the previous call to nag_ztpqrt (f08bpc) (see lin nag_ztpqrt (f08bpc)).
Constraint: $0 \leq \mathbf{l} \leq \mathbf{k}$.
8: $\quad \mathbf{n b}$ - Integer
Input
On entry: $n b$, the blocking factor used in a previous call to nag_ztpqrt (f08bpc) to compute the $Q R$ factorization of a triangular-pentagonal matrix containing composite matrices A and B.

Constraints:

```
nb \geq1;
if \mathbf{k}>0,\mathbf{nb}\leq\mathbf{k}.
```

9: $\quad \mathbf{v}[\operatorname{dim}]-$ const Complex
Input
Note: the dimension, dim, of the array \mathbf{v} must be at least

```
max}(1,\mathbf{pdv}\times\mathbf{k})\mathrm{ when order = Nag_ColMajor;
    max(1,m\timespdv) when order = Nag_RowMajor and side = Nag_LeftSide;
    max}(1,\mathbf{n}\times\mathbf{pdv})\mathrm{ when order = Nag_RowMajor and side }=\mathrm{ Nag_RightSide.
```

The (i, j) th element of the matrix V is stored in

$$
\begin{aligned}
& \mathbf{v}[(j-1) \times \mathbf{p d v}+i-1] \text { when } \text { order }=\text { Nag_ColMajor; } \\
& \mathbf{v}[(i-1) \times \mathbf{p d v}+j-1] \text { when order }=\text { Nag_RowMajor. }
\end{aligned}
$$

On entry: the m_{v} by n_{v} matrix V; this should remain unchanged from the array \mathbf{b} returned by a previous call to nag_ztpqrt (f08bpc).
pdv - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{v}.

Constraints:

if order $=$ Nag_ColMajor,
if side $=$ Nag_LeftSide, $\mathbf{p d v} \geq \max (1, \mathbf{m})$;
if side $=$ Nag_RightSide, $\mathbf{p d v} \geq \max (1, \mathbf{n})$;
if $\boldsymbol{o r d e r}=$ Nag_RowMajor, pdv $\geq \max (1, \mathbf{k})$.
11: $\mathbf{t}[$ dim $]$ - const Complex Input
Note: the dimension, dim, of the array \mathbf{t} must be at least
$\max (1, \mathbf{p d t} \times \mathbf{k})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{n b} \times \mathbf{p d t})$ when order $=$ Nag_RowMajor.

The (i, j) th element of the matrix T is stored in
$\mathbf{t}[(j-1) \times \mathbf{p d t}+i-1]$ when order $=$ Nag_ColMajor;
$\mathbf{t}[(i-1) \times \mathbf{p d t}+j-1]$ when $\mathbf{o r d e r}=$ Nag_RowMajor..

On entry: this must remain unchanged from a previous call to nag_ztpqrt (f08bpc) (see \mathbf{t} in nag_ztpqrt (f08bpc)).
pdt - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array \mathbf{t}.

Constraints:

if order $=$ Nag_ColMajor, $\mathbf{p d t} \geq \mathbf{n b}$;
if order $=$ Nag_RowMajor, $\mathbf{p d t} \geq \max (1, \mathbf{k})$.
c1[dim] - Complex
Input/Output
Note: the dimension, dim, of the array $\mathbf{c 1}$ must be at least
$\max (1$, pdc1 $\times \mathbf{n})$ when side $=$ Nag_LeftSide and order $=$ Nag_ColMajor;
$\max (1, \mathbf{k} \times \mathbf{p d c} 1)$ when side $=$ Nag_LeftSide and order $=$ Nag_RowMajor;
$\max (1$, pdc1 $\times \mathbf{k})$ when side $=$ Nag_RightSide and order $=$ Nag_ColMajor;
$\max (1, \mathbf{m} \times \mathbf{p d c} 1)$ when side $=$ Nag_RightSide and order $=$ Nag_RowMajor.
On entry: C_{1}, the first part of the composite matrix C.
if side $=$ Nag_LeftSide
then $\mathbf{c} 1$ contains the first k rows of C;
if side $=$ Nag_RightSide
then $\mathbf{c} 1$ contains the first k columns of C.
On exit: c1 is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{H}} C$ or $C Q$ or $C Q^{\mathrm{H}}$.
pdc1 - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array c1.

Constraints:
if order = Nag_ColMajor,
if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$;
if side $=$ Nag_RightSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{m})$;
if order $=$ Nag_RowMajor,
if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{n})$;
if side $=$ Nag_RightSide, pdc1 $\geq \max (1, \mathbf{k}) .$.
15: $\quad \mathbf{c 2}[\mathrm{dim}]$ - Complex
Input/Output
Note: the dimension, dim, of the array $\mathbf{c 2}$ must be at least
$\max (1, \mathbf{p d c} 2 \times \mathbf{n})$ when order $=$ Nag_ColMajor;
$\max (1, \mathbf{m} \times \mathbf{p d c} 2)$ when order $=$ Nag_RowMajor.
On entry: C_{2}, the second part of the composite matrix C.
if side $=$ Nag_LeftSide
then $\mathbf{c} 2$ contains the remaining m_{v} rows of C;
if side $=$ Nag_RightSide
then $\mathbf{c 2}$ contains the remaining m_{v} columns of C;
On exit: c2 is overwritten by the corresponding block of $Q C$ or $Q^{\mathrm{H}} C$ or $C Q$ or $C Q^{\mathrm{H}}$.
pdc2 - Integer
Input
On entry: the stride separating row or column elements (depending on the value of order) in the array c2.
Constraints:
if $\mathbf{o r d e r}=$ Nag_ColMajor, $^{\text {pdc } 2} \geq \max (1, \mathbf{m}) ;$
if $\mathbf{o r d e r}=\operatorname{Nag}_{\text {_RowMajor, }}$ pdc2 $\geq \max (1, \mathbf{n})$.

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_ENUM_INT_3

On entry, side $=\langle$ value $\rangle, \mathbf{k}=\langle$ value $\rangle, \mathbf{m}=\langle$ value \rangle and $\mathbf{p d c} 1=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$;
if side $=$ Nag_RightSide, pdc $1 \geq \max (1, \mathbf{m})$.
On entry, side $=\langle$ value $\rangle, \mathbf{m}=\langle$ value $\rangle, \mathbf{n}=\langle$ value \rangle and $\mathbf{p d v}=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d v} \geq \max (1, \mathbf{m})$;
if side $=$ Nag_RightSide, $\mathbf{p d v} \geq \max (1, \mathbf{n})$.
On entry, side $=\langle$ value $\rangle, \mathbf{p d c} \mathbf{1}=\langle$ value $\rangle, \mathbf{n}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: if side $=$ Nag_LeftSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{n})$;
if side $=$ Nag_RightSide, $\mathbf{p d c} 1 \geq \max (1, \mathbf{k})$.

NE_INT

On entry, $\mathbf{k}=\langle$ value \rangle.
Constraint: $\mathbf{k} \geq 0$.
On entry, $\mathbf{m}=\langle$ value \rangle.
Constraint: $\mathbf{m} \geq 0$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INT_2

On entry, $\mathbf{l}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: $0 \leq \mathbf{l} \leq \mathbf{k}$.
On entry, $\mathbf{m}=\langle$ value \rangle and $\mathbf{p d c 2}=\langle$ value \rangle.
Constraint: pdc2 $\geq \max (1, \mathbf{m})$.
On entry, $\mathbf{n b}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: $\mathbf{n b} \geq 1$ and
if $\mathbf{k}>0, \mathbf{n b} \leq \mathbf{k}$.
On entry, pdc2 $=\langle$ value \rangle and $\mathbf{n}=\langle$ value \rangle.
Constraint: pde2 $\geq \max (1, \mathbf{n})$.
On entry, pdt $=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: pdt $\geq \max (1, \mathbf{k})$.
On entry, pdt $=\langle$ value \rangle and $\mathbf{n b}=\langle$ value \rangle.
Constraint: pdt $\geq \mathbf{n b}$.
On entry, $\mathbf{p d v}=\langle$ value \rangle and $\mathbf{k}=\langle$ value \rangle.
Constraint: $\mathbf{p d v} \geq \max (1, \mathbf{k})$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

$$
\|E\|_{2}=O(\epsilon)\|C\|_{2},
$$

where ϵ is the machine precision.

8 Parallelism and Performance

nag_ztpmqrt (f08bqc) is not threaded by NAG in any implementation.
nag_ztpmqrt (f08bqc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $2 n k(2 m-k)$ if side $=$ Nag_LeftSide and $2 m k(2 n-k)$ if side $=$ Nag_RightSide.
The real analogue of this function is nag_dtpmqrt (f08bcc).

10 Example

See Section 10 in nag_ztpqrt (f08bpc).

