
NAG Library Function Document

nag_dgeqrt (f08abc)

1 Purpose

nag_dgeqrt (f08abc) recursively computes, with explicit blocking, the QR factorization of a real m by n
matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqrt (Nag_OrderType order, Integer m, Integer n, Integer nb,
double a[], Integer pda, double t[], Integer pdt, NagError *fail)

3 Description

nag_dgeqrt (f08abc) forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

It differs from nag_dgeqrf (f08aec) in that it: requires an explicit block size; stores reflector factors that
are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the
QR factorization based on the algorithm of Elmroth and Gustavson (2000).

If m � n, the factorization is given by:

A ¼ Q R
0

� �
;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes
more convenient to write the factorization as

A ¼ Q1 Q2

� � R
0

� �
;

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is upper trapezoidal, and the factorization can be written

A ¼ Q R1 R2

� �
;

where R1 is upper triangular and R2 is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min m;nð Þ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this
representation (see Section 9).

Note also that for any k < n, the information returned represents a QR factorization of the first k
columns of the original matrix A.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08abc

Mark 24 f08abc.1

../F08/f08aec.pdf
../F08/f08intro.pdf

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads to
Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: nb – Integer Input

On entry: the explicitly chosen block size to be used in computing the QR factorization. See
Section 9 for details.

Constraints:

nb � 1;
if min m;nð Þ > 0, nb � min m; nð Þ.

5: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

max 1;pda� nð Þ when order ¼ Nag ColMajor;
max 1;m� pdað Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix A is stored in

a½ j� 1ð Þ � pdaþ i� 1� when order ¼ Nag ColMajor;
a½ i� 1ð Þ � pdaþ j� 1� when order ¼ Nag RowMajor.

On entry: the m by n matrix A.

On exit: if m � n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

6: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array a.

f08abc NAG Library Manual

f08abc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

Constraints:

if order ¼ Nag ColMajor, pda � max 1;mð Þ;
if order ¼ Nag RowMajor, pda � max 1; nð Þ.

7: t½dim� – double Output

Note: the dimension, dim, of the array t must be at least

max 1;pdt�min m;nð Þð Þ when order ¼ Nag ColMajor;
max 1;nb� pdtð Þ when order ¼ Nag RowMajor.

The i; jð Þth element of the matrix T is stored in

t½ j� 1ð Þ � pdtþ i� 1� when order ¼ Nag ColMajor;
t½ i� 1ð Þ � pdtþ j� 1� when order ¼ Nag RowMajor.

On exit: further details of the orthogonal matrix Q. The number of blocks is b ¼ k
nb

� �
, where

k ¼ min m;nð Þ and each block is of order nb except for the last block, which is of order
k� b� 1ð Þ � nb. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;T b. These are stored in the nb by n matrix T as T ¼ T1jT2j . . . jT b½ �.

8: pdt – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) in the
array t.

Constraints:

if order ¼ Nag ColMajor, pdt � nb;
if order ¼ Nag RowMajor, pdt � max 1;min m; nð Þð Þ.

9: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 0.

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INT_2

On entry, pda ¼ valueh i and m ¼ valueh i.
Constraint: pda � max 1;mð Þ.
On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � max 1; nð Þ.
On entry, pdt ¼ valueh i and nb ¼ valueh i.
Constraint: pdt � nb.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08abc

Mark 24 f08abc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_INT_3

On entry, nb ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: nb � 1 and
if min m;nð Þ > 0, nb � min m; nð Þ.
On entry, pdt ¼ valueh i, m ¼ valueh i and n ¼ valueh i.
Constraint: pdt � max 1;min m;nð Þð Þ.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Parallelism and Performance

nag_dgeqrt (f08abc) is not threaded by NAG in any implementation.

nag_dgeqrt (f08abc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ if
m < n.

To apply Q to an arbitrary real rectangular matrix C, nag_dgeqrt (f08abc) may be followed by a call to
nag_dgemqrt (f08acc). For example,

nag_dgemqrt(order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),nb,a,pda,t,pdt,
c,pdc,&fail)

forms C ¼ QTC, where C is m by p.

To form the orthogonal matrix Q explicitly, simply initialize the m by m matrix C to the identity matrix
and form C ¼ QC using nag_dgemqrt (f08acc) as above.

The block size, nb, used by nag_dgeqrt (f08abc) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb ¼ 64� min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To compute a QR factorization with column pivoting, use nag_dtpqrt (f08bbc) or nag_dgeqpf (f08bec).

The complex analogue of this function is nag_zgeqrt (f08apc).

f08abc NAG Library Manual

f08abc.4 Mark 24

../F08/f08acc.pdf
../F08/f08acc.pdf
../F08/f08acc.pdf
../F08/f08acc.pdf
../F08/f08bbc.pdf
../F08/f08bec.pdf
../F08/f08apc.pdf

10 Example

This example solves the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14

2:30 0:24 0:40 �0:35
�1:93 0:64 �0:66 0:08

0:15 0:30 0:15 �2:13
�0:02 1:03 �1:43 0:50

0
BBBBB@

1
CCCCCA

and B ¼

�2:67 0:41
�0:55 �3:10

3:34 �4:01
�0:77 2:76

0:48 �6:17
4:10 0:21

0
BBBBB@

1
CCCCCA
:

10.1 Program Text

/* nag_dgeqrt (f08abc) Example Program.
*
* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
double rnorm;
Integer exit_status = 0;
Integer pda, pdb, pdt;
Integer i, j, m, n, nb, nrhs;
/* Arrays */
double *a = 0, *b = 0, *t = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I-1]
#define B(I,J) b[(J-1)*pdb + I-1]
#define T(I,J) t[(J-1)*pdt + I-1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J-1]
#define B(I,J) b[(I-1)*pdb + J-1]
#define T(I,J) t[(I-1)*pdt + J-1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);

printf("nag_dgeqrt (f08abc) Example Program Results\n\n");
fflush(stdout);

/* Skip heading in data file*/
scanf("%*[^\n]");
scanf("%ld%ld%ld%*[^\n]", &m, &n, &nrhs);
nb = MIN(m, n);
if (!(a = NAG_ALLOC(m*n, double))||

!(b = NAG_ALLOC(m*nrhs, double))||
!(t = NAG_ALLOC(nb*MIN(m, n), double)))

{

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08abc

Mark 24 f08abc.5

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
#ifdef NAG_COLUMN_MAJOR

pda = m;
pdb = m;
pdt = nb;

#else
pda = n;
pdb = nrhs;
pdt = MIN(m, n);

#endif

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

for (j = 1; j <= n; ++j)
scanf("%lf", &A(i, j));

scanf("%*[^\n]");

for (i = 1; i <= m; ++i)
for (j = 1; j <= nrhs; ++j)

scanf("%lf", &B(i, j));
scanf("%*[^\n]");

/* nag_dgeqrt (f08abc).
* Compute the QR factorization of A by recursive algorithm.
*/

nag_dgeqrt(order, m, n, nb, a, pda, t, pdt, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_dgeqrt (f08abc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* nag_dgemqrt (f08acc).
* Compute C = (C1) = (Q^T)*B, storing the result in B
* (C2)
* by applying Q^T from left.
*/

nag_dgemqrt(order, Nag_LeftSide, Nag_Trans, m, nrhs, n, nb, a, pda, t, pdt,
b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dgemqrt (f08acc).\n%s\n", fail.message);
exit_status = 2;
goto END;

}

/* nag_dtrtrs (f07tec).
* Compute least-squares solutions by backsubstitution in R*X = C1.
*/

nag_dtrtrs(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, n, nrhs, a, pda,
b, pdb, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_dtrtrs (f07tec).\n%s\n", fail.message);
exit_status = 3;
goto END;

}

/* nag_gen_real_mat_print (x04cac).
* Print least-squares solutions.
*/

nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b,
pdb, "Least-squares solution(s)", 0, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message);
exit_status = 4;
goto END;

}

printf("\n Square root(s) of the residual sum(s) of squares\n");

f08abc NAG Library Manual

f08abc.6 Mark 24

for (j=1; j<=nrhs; j++) {
/* nag_dge_norm (f16rac).
* Compute and print estimate of the square root of the residual
* sum of squares.
*/

nag_dge_norm(order, Nag_FrobeniusNorm, m - n, 1, &B(n + 1,j), pdb, &rnorm,
&fail);

if (fail.code != NE_NOERROR) {
printf("\nError from nag_dge_norm (f16rac).\n%s\n", fail.message);
exit_status = 5;
goto END;

}
printf(" %11.2e ", rnorm);

}
printf("\n");

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(t);

return exit_status;
}

10.2 Program Data

nag_dgeqrt (f08abc) Example Program Data

6 4 2 : m, n and nrhs

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 : matrix A

-2.67 0.41
-0.55 -3.10
3.34 -4.01

-0.77 2.76
0.48 -6.17
4.10 0.21 : matrix B

10.3 Program Results

nag_dgeqrt (f08abc) Example Program Results

Least-squares solution(s)
1 2

1 1.5339 -1.5753
2 1.8707 0.5559
3 -1.5241 1.3119
4 0.0392 2.9585

Square root(s) of the residual sum(s) of squares
2.22e-02 1.38e-02

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08abc

Mark 24 f08abc.7 (last)

	f08abc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Elmroth and Gustavson (2000)
	Golub and Van Loan (2012)

	5 Arguments
	order
	m
	n
	nb
	a
	pda
	t
	pdt
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

