f01 — Matrix Factorizations f0lkec

NAG Library Function Document

nag_matop_complex gen matrix_cond_pow (f01kec)

1 Purpose

nag _matop_complex gen matrix_cond pow (f0lkec) computes an estimate of the relative condition
number k4 of the pth power (where p is real) of a complex n by n matrix A, in the 1-norm. The
principal matrix power AP is also returned.

2 Specification

#include <nag.h>
#include <nagf01l.h>

void nag_matop_complex_gen_matrix_cond_pow (Integer n, Complex all,
Integer pda, double p, double *condpa, NagError *fail)

3 Description

For a matrix A with no eigenvalues on the closed negative real line, A” (p € R) can be defined as
AP = exp(plog (4))

where log (A) is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip

{z:—7m <Im(2) < 7}).

The Fréchet derivative of the matrix pth power of A is the unique linear mapping E—L (A, E) such that
for any matrix F

(A+E)" — A" — L (A, E) = o(|| E|]).
The derivative describes the first-order effect of perturbations in A on the matrix power A?.
The relative condition number of the matrix pth power can be defined by
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where ||L(A)|| is the norm of the Fréchet derivative of the matrix power at A.

nag matop_complex gen matrix_cond pow (fOlkec) uses the algorithms of Higham and Lin (2011) and
Higham and Lin (2013) to compute x4 and AP. The real number p is expressed as p = g + r where

€ (—=1,1) and r € Z. Then A? = A?A". The integer power A" is found using a combination of binary
powering and, if necessary, matrix inversion. The fractional power A? is computed using a Schur
decomposition, a Padé approximant and the scaling and squaring method.

To obtain the estimate of k4», nag matop complex gen matrix_cond pow (f0lkec) first estimates
|L(A)|| by computing an estimate  of a quantity K € [n~'||L(A)|;,n||L(A)||,], such that v < K. This
requires multiple Fréchet derivatives to be computed. Fréchet derivatives of A? are obtained by
differentiating the Padé approximant. Fréchet derivatives of AP are then computed using a combination
of the chain rule and the product rule for Fréchet derivatives.

If A is nonsingular but has negative real eigenvalues nag matop complex gen matrix _cond pow
(f01kec) will return a non-principal matrix pth power and its condition number.
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Arguments

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

a[dim] — Complex Input/Output
Note: the dimension, dim, of the array a must be at least pda x n.

The (i, j)th element of the matrix A is stored in a[(j — 1) x pda+ i — 1].

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, A?, unless fail.code = NE NEGATIVE EIGVAL,
in which case a non-principal pth power is returned.

pda — Integer Input
On entry: the stride separating matrix row elements in the array a.

Constraint: pda > n.

p — double Input
On entry: the required power of A.

condpa — double * Output

On exit: if fail.code = NE NOERROR or NW_SOME PRECISION LOSS, an estimate of the
relative condition number of the matrix pth power, k4. Alternatively, if fail.code = NE_RCOND,
the absolute condition number of the matrix pth power.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.
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NE_INT 2
On entry, pda = (value) and n = (value).
Constraint: pda > n.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEGATIVE_EIGVAL
A has eigenvalues on the negative real line. The principal pth power is not defined in this case, so
a non-principal power was returned.

NE_RCOND

The relative condition number is infinite. The absolute condition number was returned instead.

NE_SINGULAR

A is singular so the pth power cannot be computed.

NW_SOME_PRECISION_LOSS

AP has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

7  Accuracy

nag matop complex gen matrix_cond pow (fOlkec) uses the norm estimation function
nag linsys_complex gen norm_rcomm (fO04zdc) to produce an estimate v of a quantity
K € [n7Y|L(A)|l;,n||L(A)|;], such that ¥ < K. For further details on the accuracy of norm estimation,
see the documentation for nag_linsys complex gen norm rcomm (f04zdc).

For a normal matrix A (for which A"A = AAMY), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues of
A and then constructing AP using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. See Higham and Lin (2011) and Higham and
Lin (2013) for details and further discussion.

8 Parallelism and Performance

nag matop_complex gen matrix_cond pow (f0lkec) is threaded by NAG for parallel execution in
multithreaded implementations of the NAG Library.

nag matop complex gen matrix_cond pow (f0lkec) makes calls to BLAS and/or LAPACK routines,
which may be threaded within the vendor library used by this implementation. Consult the
documentation for the vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9  Further Comments
The amount of complex allocatable memory required by the algorithm is typically of the order 10 x n?.

The cost of the algorithm is O(n*) floating-point operations; see Higham and Lin (2013).

If the matrix pth power alone is required, without an estimate of the condition number, then
nag_matop_complex gen matrix_pow (f01fqc) should be used. If the Fréchet derivative of the matrix
power is required then nag matop complex gen matrix_frcht pow (fO0lkfc) should be used. The real
analogue of this function is nag_matop real gen matrix_cond pow (f01ljec).

Mark 24 fOlkec.3


../F04/f04zdc.pdf
../F04/f04zdc.pdf
../F01/f01fqc.pdf
../F01/f01kfc.pdf
../F01/f01jec.pdf

f01kec NAG Library Manual

10 Example
This example estimates the relative condition number of the matrix power AP, where p = 0.4 and
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10.1 Program Text

/* nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program.
*

* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf0l.h>
#include <nagx04.h>

#define A(I,J) al[J*pda + II

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda;
double p, condpa;
/* Arrays */
Complex *a = 0;

/* Nag Types */
Nag_OrderType order = Nag_ColMajor;
NagError fail;

INIT FAIL(fail);

/* Output preamble */

printf ("nag_matop_complex_gen_matrix_cond_pow (f0lkec) ");
printf ("Example Program Results\n\n");

fflush(stdout) ;

/* Skip heading in data file */
scanf ("s*[*\n] ");

/* Read in the problem size and the required power */
scanf ("%14d", &n);
scanf ("$1f", &p);
scanf ("s*[“\nl]");

pda = n;

if (!(a = NAG_ALLOC(pda*n, Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

/* Read in the matrix A from data file */
for (i = 0; 1 < n; i++)

for (3 = 0; j < n; j++) scanf(" ( %1f , %1f ) ", &A(i,J).re, &A(i,J).im);
scanf ("s*[*\n] ");

/* Find the matrix pth power and condition number using
* nag_matop_complex_gen_matrix_cond_pow (fOlkec)
* Condition number complex matrix power
*/

nag_matop_complex_gen_matrix_cond_pow (n, a, pda, p, &condpa, &fail);
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if (fail.code != NE_NOERROR) {

printf ("Error from nag _matop_complex_gen_matrix_cond_pow (f0lkec)\n%s\n",
fail.message) ;

exit_status = 1;

goto END;

}

/* Print matrix A"p using nag_gen_complx_mat_print

* Print complex general matrix

*/

nag_gen_complx_mat_print

if

(fail.code

{

(easy-to-use)

printf ("Error from nag_gen_complx_mat_print

exit_status =

2;

goto END;

}

/* Print relative condition number estimate */

"A*p", NULL,

(x04dac)

&fail);

(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, a, pda,
!= NE_NOERROR)
(x04dac)\n%s\n", fail.message);

printf ("Estimated relative condition number is: %7.2f\n", condpa);
END:
NAG_FREE (a) ;
return exit_status;
}
10.2 Program Data
nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program Data
4 0.4 :Values of n and p
(1.0,2.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(1.0,1.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(1.0,0.0) (2.0,0.0) (1.0,0.0) (0.0,2.0)
(3.0,0.0) (0.0,1.0) (2.0,1.0) (1.0,0.0) End of matrix a
10.3 Program Results
nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program Results
A'p
1 2 3 4
1 0.9742 0.8977 0.6389 0.0975
0.5211 -0.1170 -0.3900 0.6205
2 0.1586 1.0176 0.0623 0.6431
0.2763 -0.0250 -0.3471 0.2560
3 0.2589 0.5633 1.1470 -0.3771
-0.5817 0.3969 0.4042 0.3113
4 0.8713 -0.5734 0.2816 1.3568
-0.0270 0.0868 0.3739 -0.2709
Estimated relative condition number is: 6.86
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