f01 — Matrix Factorizations f0lkec

NAG Library Function Document

nag_matop_complex gen matrix_cond_pow (f01kec)

1 Purpose

nag _matop_complex gen matrix_cond pow (f0lkec) computes an estimate of the relative condition
number k4 of the pth power (where p is real) of a complex n by n matrix A, in the 1-norm. The
principal matrix power AP is also returned.

2 Specification

#include <nag.h>
#include <nagf01l.h>

void nag_matop_complex_gen_matrix_cond_pow (Integer n, Complex all,
Integer pda, double p, double *condpa, NagError *fail)

3 Description

For a matrix A with no eigenvalues on the closed negative real line, A” (p € R) can be defined as
AP = exp(plog (4))

where log (A) is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip

{z:—7m <Im(2) < 7}).

The Fréchet derivative of the matrix pth power of A is the unique linear mapping E—L (A, E) such that
for any matrix F

(A+E)" — A" — L (A, E) = o(|| E|]).
The derivative describes the first-order effect of perturbations in A on the matrix power A?.
The relative condition number of the matrix pth power can be defined by

_ ILCA)T1A]l
[REY

where ||L(A)|| is the norm of the Fréchet derivative of the matrix power at A.

nag matop_complex gen matrix_cond pow (fOlkec) uses the algorithms of Higham and Lin (2011) and
Higham and Lin (2013) to compute x4 and AP. The real number p is expressed as p = g + r where

€ (—=1,1) and r € Z. Then A? = A?A". The integer power A" is found using a combination of binary
powering and, if necessary, matrix inversion. The fractional power A? is computed using a Schur
decomposition, a Padé approximant and the scaling and squaring method.

To obtain the estimate of k4», nag matop complex gen matrix_cond pow (f0lkec) first estimates
|L(A)|| by computing an estimate of a quantity K € [n~'||L(A)|;,n||L(A)||,], such that v < K. This
requires multiple Fréchet derivatives to be computed. Fréchet derivatives of A? are obtained by
differentiating the Padé approximant. Fréchet derivatives of AP are then computed using a combination
of the chain rule and the product rule for Fréchet derivatives.

If A is nonsingular but has negative real eigenvalues nag matop complex gen matrix _cond pow
(f01kec) will return a non-principal matrix pth power and its condition number.

Mark 24 fOlkec.1

f0lkec NAG Library Manual

4

References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur—Padé¢ algorithm for fractional powers of a matrix SIAM J. Matrix
Anal. Appl. 32(3) 1056-1078

Higham N J and Lin L (2013) An improved Schur—Padé¢ algorithm for fractional powers of a matrix and
their Fréchet derivatives MIMS Eprint 2013.1 Manchester Institute for Mathematical Sciences, School of
Mathematics, University of Manchester http://eprints.ma.man.ac.uk/

5

1:

6

Arguments

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

a[dim] — Complex Input/Output
Note: the dimension, dim, of the array a must be at least pda x n.

The (i, j)th element of the matrix A is stored in a[(j — 1) x pda+ i — 1].

On entry: the n by n matrix A.

On exit: the n by n principal matrix pth power, A?, unless fail.code = NE NEGATIVE EIGVAL,
in which case a non-principal pth power is returned.

pda — Integer Input
On entry: the stride separating matrix row elements in the array a.

Constraint: pda > n.

p — double Input
On entry: the required power of A.

condpa — double * Output

On exit: if fail.code = NE NOERROR or NW_SOME PRECISION LOSS, an estimate of the
relative condition number of the matrix pth power, k4. Alternatively, if fail.code = NE_RCOND,
the absolute condition number of the matrix pth power.

fail — NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

fOlkec.2 Mark 24

http://eprints.ma.man.ac.uk/
../GENINT/essint.pdf
../GENINT/essint.pdf

f01 — Matrix Factorizations f01kec

NE_INT 2
On entry, pda = (value) and n = (value).
Constraint: pda > n.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEGATIVE_EIGVAL
A has eigenvalues on the negative real line. The principal pth power is not defined in this case, so
a non-principal power was returned.

NE_RCOND

The relative condition number is infinite. The absolute condition number was returned instead.

NE_SINGULAR

A is singular so the pth power cannot be computed.

NW_SOME_PRECISION_LOSS

AP has been computed using an IEEE double precision Padé approximant, although the arithmetic
precision is higher than IEEE double precision.

7 Accuracy

nag matop complex gen matrix_cond pow (fOlkec) uses the norm estimation function
nag linsys_complex gen norm_rcomm (fO04zdc) to produce an estimate v of a quantity
K € [n7Y|L(A)|l;,n||L(A)|;], such that ¥ < K. For further details on the accuracy of norm estimation,
see the documentation for nag_linsys complex gen norm rcomm (f04zdc).

For a normal matrix A (for which A"A = AAMY), the Schur decomposition is diagonal and the
computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues of
A and then constructing AP using the Schur vectors. This should give a very accurate result. In general,
however, no error bounds are available for the algorithm. See Higham and Lin (2011) and Higham and
Lin (2013) for details and further discussion.

8 Parallelism and Performance

nag matop_complex gen matrix_cond pow (f0lkec) is threaded by NAG for parallel execution in
multithreaded implementations of the NAG Library.

nag matop complex gen matrix_cond pow (f0lkec) makes calls to BLAS and/or LAPACK routines,
which may be threaded within the vendor library used by this implementation. Consult the
documentation for the vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

9 Further Comments
The amount of complex allocatable memory required by the algorithm is typically of the order 10 x n?.

The cost of the algorithm is O(n*) floating-point operations; see Higham and Lin (2013).

If the matrix pth power alone is required, without an estimate of the condition number, then
nag_matop_complex gen matrix_pow (f01fqc) should be used. If the Fréchet derivative of the matrix
power is required then nag matop complex gen matrix_frcht pow (fO0lkfc) should be used. The real
analogue of this function is nag_matop real gen matrix_cond pow (f01ljec).

Mark 24 fOlkec.3

../F04/f04zdc.pdf
../F04/f04zdc.pdf
../F01/f01fqc.pdf
../F01/f01kfc.pdf
../F01/f01jec.pdf

f01kec NAG Library Manual

10 Example
This example estimates the relative condition number of the matrix power AP, where p = 0.4 and

1+2¢ 3 2 1+ 34

e 11 24
A= 1 2 1 21
3 i 241 1

10.1 Program Text

/* nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program.
*

* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf0l.h>
#include <nagx04.h>

#define A(I,J) al[J*pda + II

int main(void)

{
/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda;
double p, condpa;
/* Arrays */
Complex *a = 0;

/* Nag Types */
Nag_OrderType order = Nag_ColMajor;
NagError fail;

INIT FAIL(fail);

/* Output preamble */

printf ("nag_matop_complex_gen_matrix_cond_pow (f0lkec) ");
printf ("Example Program Results\n\n");

fflush(stdout) ;

/* Skip heading in data file */
scanf ("s*[*\n] ");

/* Read in the problem size and the required power */
scanf ("%14d", &n);
scanf ("$1f", &p);
scanf ("s*[“\nl]");

pda = n;

if (!(a = NAG_ALLOC(pda*n, Complex))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;

/* Read in the matrix A from data file */
for (i = 0; 1 < n; i++)

for (3 = 0; j < n; j++) scanf(" (%1f , %1f) ", &A(i,J).re, &A(i,J).im);
scanf ("s*[*\n] ");

/* Find the matrix pth power and condition number using
* nag_matop_complex_gen_matrix_cond_pow (fOlkec)
* Condition number complex matrix power
*/

nag_matop_complex_gen_matrix_cond_pow (n, a, pda, p, &condpa, &fail);

fOlkec.4 Mark 24

f01 — Matrix Factorizations f0lkec

if (fail.code != NE_NOERROR) {

printf ("Error from nag _matop_complex_gen_matrix_cond_pow (f0lkec)\n%s\n",
fail.message) ;

exit_status = 1;

goto END;

}

/* Print matrix A"p using nag_gen_complx_mat_print

* Print complex general matrix

*/

nag_gen_complx_mat_print

if

(fail.code

{

(easy-to-use)

printf ("Error from nag_gen_complx_mat_print

exit_status =

2;

goto END;

}

/* Print relative condition number estimate */

"A*p", NULL,

(x04dac)

&fail);

(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, a, pda,
!= NE_NOERROR)
(x04dac)\n%s\n", fail.message);

printf ("Estimated relative condition number is: %7.2f\n", condpa);
END:
NAG_FREE (a) ;
return exit_status;
}
10.2 Program Data
nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program Data
4 0.4 :Values of n and p
(1.0,2.0) (3.0,0.0) (2.0,0.0) (1.0,3.0)
(1.0,1.0) (1.0,0.0) (1.0,0.0) (2.0,1.0)
(1.0,0.0) (2.0,0.0) (1.0,0.0) (0.0,2.0)
(3.0,0.0) (0.0,1.0) (2.0,1.0) (1.0,0.0) End of matrix a
10.3 Program Results
nag_matop_complex_gen_matrix_cond_pow (fOlkec) Example Program Results
A'p
1 2 3 4
1 0.9742 0.8977 0.6389 0.0975
0.5211 -0.1170 -0.3900 0.6205
2 0.1586 1.0176 0.0623 0.6431
0.2763 -0.0250 -0.3471 0.2560
3 0.2589 0.5633 1.1470 -0.3771
-0.5817 0.3969 0.4042 0.3113
4 0.8713 -0.5734 0.2816 1.3568
-0.0270 0.0868 0.3739 -0.2709
Estimated relative condition number is: 6.86
Mark 24 fO0lkec.5 (last)

	f01kec
	1 Purpose
	2 Specification
	3 Description
	4 References
	Higham (2008)
	Higham and Lin (2011)
	Higham and Lin (2013)

	5 Arguments
	n
	a
	pda
	p
	condpa
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NEGATIVE_EIGVAL
	NE_RCOND
	NE_SINGULAR
	NW_SOME_PRECISION_LOSS

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

