
NAG Library Function Document

nag_matop_real_gen_matrix_cond_sqrt (f01jdc)

1 Purpose

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) computes an estimate of the relative condition number
�A1=2 and a bound on the relative residual, in the Frobenius norm, for the square root of a real n by n

matrix A. The principal square root, A1=2, of A is also returned.

2 Specification

#include <nag.h>
#include <nagf01.h>

void nag_matop_real_gen_matrix_cond_sqrt (Integer n, double a[],
Integer pda, double *alpha, double *condsa, NagError *fail)

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix square root, A1=2,
of A is the unique square root with eigenvalues in the right half-plane.

The Fréchet derivative of a matrix function A1=2 in the direction of the matrix E is the linear function
mapping E to L A;Eð Þ such that

Aþ Eð Þ1=2 �A1=2 � L A;Eð Þ ¼ o Ak kð Þ:
The absolute condition number is given by the norm of the Fréchet derivative which is defined by

L Að Þk k :¼ max
E 6¼0

L A;Eð Þk k
Ek k :

The Fréchet derivative is linear in E and can therefore be written as

vec L A;Eð Þð Þ ¼ K Að Þvec Eð Þ;

where the vec operator stacks the columns of a matrix into one vector, so that K Að Þ is n2 � n2.

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) uses Algorithm 3.20 from Higham (2008) to compute an
estimate � such that � � K Xð Þk kF . The quantity of � provides a good approximation to L Að Þk kF . The
relative condition number, �A1=2 , is then computed via

�A1=2 ¼ L Að Þk kF Ak kF
A1=2k kF

:

�A1=2 is returned in the argument condsa.

A1=2 is computed using the algorithm described in Higham (1987). This is a real arithmetic version of
the algorithm of Björck and Hammarling (1983). In addition, a blocking scheme described in Deadman
et al. (2013) is used.

The computed quantity � is a measure of the stability of the relative residual (see Section 7). It is
computed via

� ¼
A1=2
�� ��2

F

Ak kF
:

f01 – Matrix Factorizations f01jdc

Mark 24 f01jdc.1



4 References

Björck Å and Hammarling S (1983) A Schur method for the square root of a matrix Linear Algebra
Appl. 52/53 127–140

Deadman E, Higham N J and Ralha R (2013) Blocked Schur Algorithms for Computing the Matrix
Square Root Applied Parallel and Scientific Computing: 11th International Conference, (PARA 2012,
Helsinki, Finland) P. Manninen and P. Öster, Eds Lecture Notes in Computer Science 7782 171–181
Springer–Verlag

Higham N J (1987) Computing real square roots of a real matrix Linear Algebra Appl. 88/89 405–430

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Arguments

1: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

2: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least pda� n.

The i; jð Þth element of the matrix A is stored in a½ j� 1ð Þ � pdaþ i� 1�.
On entry: the n by n matrix A.

On exit: contains, if fail:code ¼ NE_NOERROR, the n by n principal matrix square root A1=2.
Alternatively, if fail:code ¼ NE_EIGENVALUES, contains an n by n non-principal square root of
A.

3: pda – Integer Input

On entry: the stride separating matrix row elements in the array a.

Constraint: pda � n.

4: alpha – double * Output

On exit: an estimate of the stability of the relative residual for the computed principal (if
fail:code ¼ NE_NOERROR) or non-principal (if fail:code ¼ NE_EIGENVALUES) matrix square
root, �.

5: condsa – double * Output

On exit: an estimate of the relative condition number, in the Frobenius norm, of the principal (if
fail:code ¼ NE_NOERROR) or non-principal (if fail:code ¼ NE_EIGENVALUES) matrix square
root at A, �A1=2 .

6: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALG_FAIL

An error occurred when computing the condition number. The matrix square root was still
returned but you should use nag_matop_real_gen_matrix_sqrt (f01enc) to check if it is the
principal matrix square root.

f01jdc NAG Library Manual

f01jdc.2 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf
../F01/f01enc.pdf


An error occurred when computing the matrix square root. Consequently, alpha and condsa could
not be computed. It is likely that the function was called incorrectly.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_EIGENVALUES

A has a semisimple vanishing eigenvalue. A non-principal square root was returned.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

NE_INT_2

On entry, pda ¼ valueh i and n ¼ valueh i.
Constraint: pda � n.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NEGATIVE_EIGVAL

A has a negative real eigenvalue. The principal square root is not defined.
nag_matop_complex_gen_matrix_cond_sqrt (f01kdc) can be used to return a complex, non-
principal square root.

NE_SINGULAR

A has a defective vanishing eigenvalue. The square root and condition number cannot be found in
this case.

7 Accuracy

If the computed square root is ~X, then the relative residual

A� ~X2
�� ��

F

Ak kF
;

is bounded approximately by n��, where � is machine precision. The relative error in ~X is bounded
approximately by n��A1=2�.

8 Parallelism and Performance

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) is threaded by NAG for parallel execution in
multithreaded implementations of the NAG Library.

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) makes calls to BLAS and/or LAPACK routines, which
may be threaded within the vendor library used by this implementation. Consult the documentation for
the vendor library for further information.

Please consult the Users’ Note for your implementation for any additional implementation-specific
information.

f01 – Matrix Factorizations f01jdc

Mark 24 f01jdc.3

../F01/f01kdc.pdf
../F01/f01kdc.pdf


9 Further Comments

Approximately 3� n2 of real allocatable memory is required by the function.

The cost of computing the matrix square root is 85n3=3 floating-point operations. The cost of computing
the condition number depends on how fast the algorithm converges. It typically takes over twice as long
as computing the matrix square root.

If condition estimates are not required then it is more efficient to use nag_matop_real_gen_matrix_sqrt
(f01enc) to obtain the matrix square root alone. Condition estimates for the square root of a complex
matrix can be obtained via nag_matop_complex_gen_matrix_cond_sqrt (f01kdc).

10 Example

This example estimates the matrix square root and condition number of the matrix

A ¼
�5 2 �1 1
�2 �3 19 27
�9 0 15 24

7 8 11 16

0
B@

1
CA:

10.1 Program Text

/* nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program.
*
* Copyright 2013 Numerical Algorithms Group.
*
* Mark 24, 2013.
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <nagf01.h>
#include <nagx04.h>

#define A(I,J) a[J*pda + I]

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer i, j, n, pda;
double alpha, condsa;
/* Arrays */
double *a = 0;
/* Nag Types */
Nag_OrderType order = Nag_ColMajor;
NagError fail;

INIT_FAIL(fail);

/* Output preamble */
printf("nag_matop_real_gen_matrix_cond_sqrt (f01jdc) ");
printf("Example Program Results\n\n");
fflush(stdout);

/* Skip heading in data file */
scanf("%*[^\n] ");

/* Read in the problem size */
scanf("%ld%*[^\n]", &n);

pda = n;
if (!(a = NAG_ALLOC(pda*n, double))) {

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

f01jdc NAG Library Manual

f01jdc.4 Mark 24

../F01/f01enc.pdf
../F01/f01enc.pdf
../F01/f01kdc.pdf


/* Read in the matrix A from data file */
for (i = 0; i < n; i++)

for (j = 0; j < n; j++) scanf("%lf", &A(i, j));
scanf("%*[^\n] ");

/* Find matrix square root, condition number and residual bound using
* nag_matop_real_gen_matrix_cond_sqrt (f01jdc)
* Condition number for the square root of a real matrix
*/

nag_matop_real_gen_matrix_cond_sqrt (n, a, pda, &alpha, &condsa, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_matop_real_gen_matrix_cond_sqrt (f01jdc)\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print matrix sqrt(A) using nag_gen_real_mat_print (x04cac)
* Print real general matrix (easy-to-use)
*/

nag_gen_real_mat_print (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, n, a, pda, "sqrt(A)", NULL, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_real_mat_print (x04cac)\n%s\n", fail.message);
exit_status = 2;
goto END;

}

/* Print condition number estimates */
printf("Estimated relative condition number is: %7.2f\n", condsa);
printf("Condition number for the relative residual is: %7.2f\n",alpha);

END:
NAG_FREE(a);
return exit_status;

}

10.2 Program Data

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program Data

4 :Value of n

-5.0 2.0 -1.0 1.0
-2.0 -3.0 19.0 27.0
-9.0 0.0 15.0 24.0
7.0 8.0 11.0 16.0 :End of matrix a

10.3 Program Results

nag_matop_real_gen_matrix_cond_sqrt (f01jdc) Example Program Results

sqrt(A)
1 2 3 4

1 1.0000 2.0000 -1.0000 -1.0000
2 -3.0000 1.0000 2.0000 4.0000
3 -2.0000 3.0000 1.0000 2.0000
4 2.0000 -1.0000 3.0000 4.0000

Estimated relative condition number is: 77.10
Condition number for the relative residual is: 1.70

f01 – Matrix Factorizations f01jdc

Mark 24 f01jdc.5 (last)


	f01jdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Bjorck and Hammarling (1983)
	Deadman et al. (2013)
	Higham (1987)
	Higham (2008)

	5 Arguments
	n
	a
	pda
	alpha
	condsa
	fail

	6 Error Indicators and Warnings
	NE_ALG_FAIL
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_EIGENVALUES
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NEGATIVE_EIGVAL
	NE_SINGULAR

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction



