NAG Library Function Document
 nag_1d_cheb_intg (e02ajc)

1 Purpose

nag_1d_cheb_intg (e02ajc) determines the coefficients in the Chebyshev series representation of the indefinite integral of a polynomial given in Chebyshev series form.

2 Specification

```
#include <nag.h>
#include <nage02.h>
void nag_1d_cheb_intg (Integer n, double xmin, double xmax, const double a[],
    Integer ial, double qatm1, double aintc[], Integer iaint1,
    NagError *fail)
```


3 Description

nag_1d_cheb_intg (e02ajc) forms the polynomial which is the indefinite integral of a given polynomial. Both the original polynomial and its integral are represented in Chebyshev series form. If supplied with the coefficients a_{i}, for $i=0,1, \ldots, n$, of a polynomial $p(x)$ of degree n, where

$$
p(x)=\frac{1}{2} a_{0}+a_{1} T_{1}(\bar{x})+\cdots+a_{n} T_{n}(\bar{x})
$$

the function returns the coefficients a_{i}^{\prime}, for $i=0,1, \ldots, n+1$, of the polynomial $q(x)$ of degree $n+1$, where

$$
q(x)=\frac{1}{2} a_{0}^{\prime}+a_{1}^{\prime} T_{1}(\bar{x})+\cdots+a_{n+1}^{\prime} T_{n+1}(\bar{x})
$$

and

$$
q(x)=\int p(x) d x
$$

Here $T_{j}(\bar{x})$ denotes the Chebyshev polynomial of the first kind of degree j with argument \bar{x}. It is assumed that the normalized variable \bar{x} in the interval $[-1,+1]$ was obtained from your original variable x in the interval $\left[x_{\text {min }}, x_{\text {max }}\right]$ by the linear transformation

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }}
$$

and that you require the integral to be with respect to the variable x. If the integral with respect to \bar{x} is required, set $x_{\max }=1$ and $x_{\min }=-1$.

Values of the integral can subsequently be computed, from the coefficients obtained, by using nag_1d_cheb_eval2 (e02akc).

The method employed is that of Chebyshev series (see Chapter 8 of Modern Computing Methods (1961)), modified for integrating with respect to x. Initially taking $a_{n+1}=a_{n+2}=0$, the function forms successively

$$
a_{i}^{\prime}=\frac{a_{i-1}-a_{i+1}}{2 i} \times \frac{x_{\max }-x_{\min }}{2}, \quad i=n+1, n, \ldots, 1
$$

The constant coefficient a_{0}^{\prime} is chosen so that $q(x)$ is equal to a specified value, qatm1, at the lower end point of the interval on which it is defined, i.e., $\bar{x}=-1$, which corresponds to $x=x_{\min }$.

4 References

Modern Computing Methods (1961) Chebyshev-series NPL Notes on Applied Science 16 (2nd Edition) HMSO

5 Arguments

1: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the degree of the given polynomial $p(x)$.
Constraint: $\mathbf{n} \geq 0$.
2: $\mathbf{x m i n}$ - double Input
3: xmax - double Input
On entry: the lower and upper end points respectively of the interval $\left[x_{\min }, x_{\max }\right]$. The Chebyshev series representation is in terms of the normalized variable \bar{x}, where

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }} .
$$

Constraint: xmax $>$ xmin.
4: $\quad \mathbf{a}[\operatorname{dim}]$ - const double
Input
Note: the dimension, dim, of the array a must be at least $(1+(\mathbf{n}+1-1) \times \mathbf{i a 1})$.
On entry: the Chebyshev coefficients of the polynomial $p(x)$. Specifically, element $i \times \mathbf{i a}$ of a must contain the coefficient a_{i}, for $i=0,1, \ldots, n$. Only these $n+1$ elements will be accessed.

5: ia1 - Integer
Input
On entry: the index increment of a. Most frequently the Chebyshev coefficients are stored in adjacent elements of a, and ia1 must be set to 1 . However, if for example, they are stored in $\mathbf{a}[0], \mathbf{a}[3], \mathbf{a}[6], \ldots$, then the value of ia1 must be 3 . See also Section 9.
Constraint: ia1 ≥ 1.
6: \quad qatm1 - double
Input
On entry: the value that the integrated polynomial is required to have at the lower end point of its interval of definition, i.e., at $\bar{x}=-1$ which corresponds to $x=x_{\text {min }}$. Thus, qatm1 is a constant of integration and will normally be set to zero by you.

7: \quad aintc $[\operatorname{dim}]$ - double
Output
Note: the dimension, dim, of the array aintc must be at least $(1+(\mathbf{n}+1) \times$ iaint1 $)$.
On exit: the Chebyshev coefficients of the integral $q(x)$. (The integration is with respect to the variable x, and the constant coefficient is chosen so that $q\left(x_{\min }\right)$ equals qatm1). Specifically, element $i \times$ iaint 1 of ainte contains the coefficient a_{i}^{\prime}, for $i=0,1, \ldots, n+1$.

8: iaint1 - Integer
Input
On entry: the index increment of aintc. Most frequently the Chebyshev coefficients are required in adjacent elements of aintc, and iaint 1 must be set to 1 . However, if, for example, they are to be stored in $\boldsymbol{a i n t c}[0], \boldsymbol{a i n t c}[3], \operatorname{aintc}[6], \ldots$, then the value of iaint1 must be 3 . See also Section 9 .
Constraint: iaint $1 \geq 1$.
fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, ia1 $=\langle$ value \rangle.
Constraint: ia1 ≥ 1.
On entry, iaint1 $=\langle$ value \rangle.
Constraint: iaint $1 \geq 1$.
On entry, $\mathbf{n}+1=\langle$ value \rangle.
Constraint: $\mathbf{n}+1 \geq 1$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_REAL_2

On entry, $\mathbf{x m a x}=\langle$ value \rangle and $\mathbf{x m i n}=\langle$ value \rangle.
Constraint: xmax $>$ xmin.

7 Accuracy

In general there is a gain in precision in numerical integration, in this case associated with the division by $2 i$ in the formula quoted in Section 3.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken is approximately proportional to $n+1$.
The increments ia1, iaint1 are included as arguments to give a degree of flexibility which, for example, allows a polynomial in two variables to be integrated with respect to either variable without rearranging the coefficients.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval $[-0.5,2.5]$. The following program evaluates the integral of the polynomial from 0.0 to 2.0 . (For the purpose of this example, xmin, xmax and the Chebyshev coefficients are simply supplied. Normally a program would read in or generate data and compute the fitted polynomial).

10.1 Program Text

```
/* nag_1d_cheb_intg (e02ajc) Example Program.
    *
    * Copyright 2001 Numerical Algorithms Group.
    *
    * Mark 7, 2001.
    */
```

```
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>
int main(void)
{
    /* Initialized data */
    const double xmin = -0.5;
    const double xmax = 2.5;
    const double a[7] =
    {2.53213, 1.13032, 0.2715, 0.04434, 0.00547, 5.4e-4, 4e-5 };
    /* Scalars */
    double ra, rb, result, xa, xb, zero;
    Integer exit_status, n, one;
    NagError fail;
    /* Arrays */
    double *aint = 0;
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_1d_cheb_intg (e02ajc) Example Program Results\n");
    n = 6;
    zero = 0.0;
    one = 1;
    /* Allocate memory */
    if (!(aint = NAG_ALLOC(n + 2, double)))
        {
            printf("Allocation failure\n");
            exit_status = -1;
            goto END;
        }
    /* nag_1d_cheb_intg (e02ajc).
        * Integral of fitted polynomial in Chebyshev series form
        */
    nag_ld_cheb_intg(n, xmin, xmax, a, one, zero, aint, one, &fail);
    if (fail.code != NE_NOERROR)
        {
            printf("Error from nag_1d_cheb_intg (e02ajc).\n%s\n",
                    fail.message);
            exit_status = 1;
            goto END;
        }
    xa = 0.0;
    xb}=2.0
    /* nag_1d_cheb_eval2 (e02akc).
    * Evaluation of fitted polynomial in one variable from
    * Chebyshev series form
    */
    nag_ld_cheb_eval2(n+1, xmin, xmax, aint, one, xa, &ra, &fail);
    if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_1d_cheb_eval2 (e02akc).\n%s\n",
                    fail.message);
                exit_status = 1;
                goto END;
            }
    /* nag_1d_cheb_eval2 (e02akc), see above. */
    nag_1d_cheb_eval2(n+1, xmin, xmax, aint, one, xb, &rb, &fail);
    if (fail.code != NE_NOERROR)
            {
                printf("Error from nag_1d_cheb_eval2 (e02akc).\n%s\n",
                    fail.message);
```

```
            exit_status = 1;
            goto END;
        }
    result = rb - ra;
    printf("\n");
    printf("Value of definite integral is %10.4f\n", result);
END:
    NAG_FREE(aint);
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_1d_cheb_intg (e02ajc) Example Program Results
Value of definite integral is 2.1515
```

