
NAG Library Function Document

nag_ode_ivp_rk_range (d02pcc)

1 Purpose

nag_ode_ivp_rk_range (d02pcc) is a function for solving the initial value problem for a first order
system of ordinary differential equations using Runge–Kutta methods.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_rk_range (Integer neq,

void (*f)(Integer neq, double t, const double y[], double yp[],
Nag_User *comm),

double twant, double *tgot, double ygot[], double ypgot[],
double ymax[], Nag_ODE_RK *opt, Nag_User *comm, NagError *fail)

3 Description

nag_ode_ivp_rk_range (d02pcc) and its associated functions (nag_ode_ivp_rk_setup (d02pvc),
nag_ode_ivp_rk_errass (d02pzc)) solve the initial value problem for a first order system of ordinary
differential equations. The functions, based on Runge–Kutta methods and derived from RKSUITE
(Brankin et al. (1991)) integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of neq solution components and t is the independent variable.

This function is designed for the usual task, namely to compute an approximate solution at a sequence of
points. You must first call nag_ode_ivp_rk_setup (d02pvc) to specify the problem and how it is to be
solved. Thereafter you call nag_ode_ivp_rk_range (d02pcc) repeatedly with successive values of twant,
the points at which you require the solution, in the range from tstart to tend (as specified in
nag_ode_ivp_rk_setup (d02pvc)). In this manner nag_ode_ivp_rk_range (d02pcc) returns the point at
which it has computed a solution tgot (usually twant), the solution there ygot and its derivative ypgot. If
nag_ode_ivp_rk_range (d02pcc) encounters some difficulty in taking a step toward twant, then it returns
the point of difficulty tgot and the solution and derivative computed there ygot and ypgot.

In the call to nag_ode_ivp_rk_setup (d02pvc) you can specify the first step size for
nag_ode_ivp_rk_range (d02pcc) to attempt or that it compute automatically an appropriate value.
Thereafter nag_ode_ivp_rk_range (d02pcc) estimates an appropriate step size for its next step. This value
and other details of the integration can be obtained after any call to nag_ode_ivp_rk_range (d02pcc) by
examining the contents of the structure opt, see Section 5. The local error is controlled at every step as
specified in nag_ode_ivp_rk_setup (d02pvc). If you wish to assess the true error, you must set
errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rk_setup (d02pvc). This assessment can be
obtained after any call to nag_ode_ivp_rk_range (d02pcc) by a call to the function
nag_ode_ivp_rk_errass (d02pzc).

For more complicated tasks, you are referred to functions nag_ode_ivp_rk_onestep (d02pdc),
nag_ode_ivp_rk_interp (d02pxc) and nag_ode_ivp_rk_reset_tend (d02pwc).

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

d02 – Ordinary Differential d02pcc

Mark 24 d02pcc.1

../D02/d02pvc.pdf
../D02/d02pzc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pzc.pdf
../D02/d02pdc.pdf
../D02/d02pxc.pdf
../D02/d02pwc.pdf
../D02/d02pvc.pdf

5 Arguments

1: neq – Integer Input

On entry: the number of ordinary differential equations in the system to be solved.

Constraint: neq � 1.

2: f – function, supplied by the user External Function

f must evaluate the first derivatives y0i (that is the functions fi) for given values of the arguments
t; yi.

The specification of f is:

void f (Integer neq, double t, const double y[], double yp[],
Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: t – double Input

On entry: the current value of the independent variable, t.

3: y½neq� – const double Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ;neq.

4: yp½neq� – double Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; neq.

5: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

3: twant – double Input

On entry: the next value of the independent variable, t, where a solution is desired.

Constraint: twant must be closer to tend than the previous of tgot (or tstart on the first call to
nag_ode_ivp_rk_range (d02pcc)); see nag_ode_ivp_rk_setup (d02pvc) for a description of tstart
and tend. twant must not lie beyond tend in the direction of integration.

4: tgot – double * Output

On exit: the value of the independent variable t at which a solution has been computed. On
successful exit with fail:code ¼ NE NOERROR, tgot will equal twant. For non-trivial values of
fail (i.e., those not related to an invalid call of nag_ode_ivp_rk_range (d02pcc)) a solution has still
been computed at the value of tgot but in general tgot will not equal twant.

5: ygot½neq� – double Input/Output

On entry: on the first call to nag_ode_ivp_rk_range (d02pcc), ygot need not be set. On all
subsequent calls ygot must remain unchanged.

d02pcc NAG Library Manual

d02pcc.2 Mark 24

../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf

On exit: an approximation to the true solution at the value of tgot. At each step of the integration
to tgot, the local error has been controlled as specified in nag_ode_ivp_rk_setup (d02pvc). The
local error has still been controlled even when tgot 6¼ twant, that is after a return with a non-
trivial error.

6: ypgot½neq� – double Output

On exit: an approximation to the first derivative of the true solution at tgot.

7: ymax½neq� – double Input/Output

On entry: on the first call to nag_ode_ivp_rk_range (d02pcc), ymax need not be set. On all
subsequent calls ymax must remain unchanged.

On exit: ymax½i� 1� contains the largest value of yij j computed at any step in the integration so
far.

8: opt – Nag_ODE_RK *

Pointer to a structure of type Nag_ODE_RK as initialized by the setup function
nag_ode_ivp_rk_setup (d02pvc) with the following members:

totfcn – Integer Output

On exit: the total number of evaluations of f used in the primary integration so far; this
does not include evaluations of f for the secondary integration specified by a prior call to
nag_ode_ivp_rk_setup (d02pvc) with errass ¼ Nag ErrorAssess on.

stpcst – Integer Output

On exit: the cost in terms of number of evaluations of f of a typical step with the method
being used for the integration. The method is specified by the argument method in a prior
call to nag_ode_ivp_rk_setup (d02pvc).

waste – double Output

On exit: the number of attempted steps that failed to meet the local error requirement
divided by the total number of steps attempted so far in the integration. A ‘large’ fraction
indicates that the integrator is having trouble with the problem being solved. This can
happen when the problem is ‘stiff’ and also when the solution has discontinuities in a low
order derivative.

stpsok – Integer Output

On exit: the number of accepted steps.

hnext – double Output

On exit: the step size the integrator plans to use for the next step.

9: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from f. An object of the required type should be declared, e.g., a
structure, and its address assigned to the pointer comm!p by means of a cast to Pointer in
the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be void * with
a C compiler that defines void * and char * otherwise.

10: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

d02 – Ordinary Differential d02pcc

Mark 24 d02pcc.3

../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../GENINT/essint.pdf
../GENINT/essint.pdf
../D02/d02pvc.pdf

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_MEMORY_FREED

Internally allocated memory has been freed by a call to nag_ode_ivp_rk_free (d02ppc) without a
subsequent call to the setup function nag_ode_ivp_rk_setup (d02pvc).

NE_NEQ

The value of neq supplied is not the same as that given to the setup function
nag_ode_ivp_rk_setup (d02pvc).
neq ¼ valueh i but the value given to nag_ode_ivp_rk_setup (d02pvc) was valueh i.

NE_NO_SETUP

The setup function nag_ode_ivp_rk_setup (d02pvc) has not been called.

NE_PREV_CALL

The previous call to a function had resulted in a severe error. You must call nag_ode_ivp_rk_setup
(d02pvc) to start another problem.

NE_PREV_CALL_INI

The previous call to the function nag_ode_ivp_rk_range (d02pcc) had resulted in a severe error.
You must call nag_ode_ivp_rk_setup (d02pvc) to start another problem.

NE_RK_INVALID_CALL

The function to be called as specified in the setup function nag_ode_ivp_rk_setup (d02pvc) was
nag_ode_ivp_rk_onestep (d02pdc). However the actual call was made to nag_ode_ivp_rk_range
(d02pcc). This is not permitted.

NE_RK_PCC_METHOD

The efficiency of the integration has been degraded. Consider calling the setup function
nag_ode_ivp_rk_setup (d02pvc) to re-initialize the integration at the current point with
method ¼ Nag RK 4 5. Alternatively nag_ode_ivp_rk_range (d02pcc) can be called again to
resume at the current point.

NE_RK_PDC_GLOBAL_ERROR_S

The global error assessment algorithm failed at the start of the integration.

NE_RK_PDC_GLOBAL_ERROR_T

The global error assessment may not be reliable for t past tgot. tgot ¼ valueh i.

NE_RK_PDC_POINTS

More than 100 output points have been obtained by integrating to tend. They have been
sufficiently close to one another that the efficiency of the integration has been degraded. It would
probably be (much) more efficient to obtain output by interpolating with nag_ode_ivp_rk_interp
(d02pxc) (after changing to method ¼ Nag RK 4 5 if you are using method ¼ Nag RK 7 8).

d02pcc NAG Library Manual

d02pcc.4 Mark 24

../D02/d02ppc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pdc.pdf
../D02/d02pdc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pxc.pdf
../D02/d02pxc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf

NE_RK_PDC_STEP

In order to satisfy the error requirements nag_ode_ivp_rk_range (d02pcc) would have to use a
step size of valueh i at current t ¼ valueh i. This is too small for the machine precision.

NE_RK_PDC_TEND

tend ¼ valueh i has been reached already. To integrate further with same problem the function
nag_ode_ivp_rk_reset_tend (d02pwc) must be called with a new value of tend.

NE_RK_TGOT_EQ_TEND

The call to nag_ode_ivp_rk_range (d02pcc) has been made after reaching tend. The previous call
to nag_ode_ivp_rk_range (d02pcc) resulted in tgot (tstart on the first call) ¼ tend. You must call
nag_ode_ivp_rk_setup (d02pvc) to start another problem.

NE_RK_TGOT_RANGE_TEND

The call to nag_ode_ivp_rk_range (d02pcc) has been made with a twant that does not lie between
the previous value of tgot (tstart on the first call) and tend. This is not permitted.

NE_RK_TGOT_RANGE_TEND_CLOSE

The call to nag_ode_ivp_rk_range (d02pcc) has been made with a twant that does not lie between
the previous value of tgot (tstart on the first call) and tend. This is not permitted. However twant
is very close to tend, so you may have meant it to be tend exactly. Check your program.

NE_RK_TWANT_CLOSE_TGOT

The call to nag_ode_ivp_rk_range (d02pcc) has been made with a twant that is not sufficiently
different from the last value of tgot (tstart on the first call). When using method ¼ Nag RK 7 8,
it must differ by at least valueh i.

NE_STIFF_PROBLEM

The problem appears to be stiff.

NW_RK_TOO_MANY

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed.

7 Accuracy

The accuracy of integration is determined by the arguments tol and thres in a prior call to
nag_ode_ivp_rk_setup (d02pvc). Note that only the local error at each step is controlled by these
arguments. The error estimates obtained are not strict bounds but are usually reliable over one step. Over
a number of steps the overall error may accumulate in various ways, depending on the properties of the
differential system.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If nag_ode_ivp_rk_range (d02pcc) returns with fail:code ¼ NE RK PDC STEP and the accuracy
specified by tol and thres is really required then you should consider whether there is a more
fundamental difficulty. For example, the solution may contain a singularity. In such a region the solution
components will usually be of a large magnitude. Successive output values of ygot and ymax should be
monitored (or the function nag_ode_ivp_rk_onestep (d02pdc) should be used since this takes one

d02 – Ordinary Differential d02pcc

Mark 24 d02pcc.5

../D02/d02pwc.pdf
../D02/d02pwc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pdc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf

integration step at a time) with the aim of trapping the solution before the singularity. In any case
numerical solution cannot be continued through a singularity, and analytical treatment may be necessary.

Performance statistics are available after any return from nag_ode_ivp_rk_range (d02pcc) by examining
the structure opt, see Section 5. If errass ¼ Nag ErrorAssess on in the call to nag_ode_ivp_rk_setup
(d02pvc), global error assessment is available after any return from nag_ode_ivp_rk_range (d02pcc)
(except when the error is due to incorrect input arguments or incorrect set up) by a call to the function
nag_ode_ivp_rk_errass (d02pzc). The approximate extra number of evaluations of f used is given by
2� opt!stpsok � opt!stpcst f o r method ¼ Nag RK 4 5 o r Nag RK 7 8 a n d
3� opt!stpsok � opt!stpcst for method ¼ Nag RK 2 3.

After a failure with fail:code ¼ NE RK PDC STEP, NE_RK_PDC_GLOBAL_ERROR_T or
NE_RK_PDC_GLOBAL_ERROR_S the diagnostic function nag_ode_ivp_rk_errass (d02pzc) may be
called only once.

If nag_ode_ivp_rk_range (d02pcc) returns with fail:code ¼ NE STIFF PROBLEM then it is advisable to
change to another code more suited to the solution of stiff problems. nag_ode_ivp_rk_range (d02pcc)
will not return with fail:code ¼ NE STIFF PROBLEM if the problem is actually stiff but it is estimated
that integration can be completed using less function evaluations than already computed.

10 Example

We solve the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2 y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0e�8 for each solution component and compute the solution at intervals of length
�=4 across the range. We use a low order Runge–Kutta method (method ¼ Nag RK 2 3) with tolerances
tol ¼ 1:0e�3 and tol ¼ 1:0e�4 in turn so that we may compare the solutions. The value of � is obtained
by using nag_pi (X01AAC).

See also Section 10 in nag_ode_ivp_rk_errass (d02pzc).

10.1 Program Text

/* nag_ode_ivp_rk_range (d02pcc) Example Program.
*
* Copyright 1992 Numerical Algorithms Group.
*
* Mark 3, 1992.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL f(Integer neq, double t1, const double y[], double yp[],

Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NEQ 2

d02pcc NAG Library Manual

d02pcc.6 Mark 24

../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pzc.pdf
../D02/d02pzc.pdf
../D02/d02pzc.pdf
../X01/x01aac.pdf
../D02/d02pzc.pdf
../D02/d02pzc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf
../D02/d02pvc.pdf

#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define FOUR 4.0

int main(void)
{

static Integer use_comm[1] = {1};
Integer exit_status = 0, i, j, neq, nout;
NagError fail;
Nag_ErrorAssess errass;
Nag_ODE_RK opt;
Nag_RK_method method;
Nag_User comm;
double hstart, pi, tend, tgot, *thres = 0, tinc, tol, tstart, twant,
*ygot = 0;
double *ymax = 0, *ypgot = 0, *ystart = 0;

INIT_FAIL(fail);

printf("nag_ode_ivp_rk_range (d02pcc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer)

/* Set initial conditions and input for nag_ode_ivp_rk_setup (d02pvc) */
neq = NEQ;
if (neq >= 1)

{
if (!(thres = NAG_ALLOC(neq, double)) ||

!(ygot = NAG_ALLOC(neq, double)) ||
!(ymax = NAG_ALLOC(neq, double)) ||
!(ypgot = NAG_ALLOC(neq, double)) ||
!(ystart = NAG_ALLOC(neq, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

exit_status = 1;
return exit_status;

}

/* nag_pi (x01aac).
* pi
*/

pi = nag_pi;
tstart = ZERO;
ystart[0] = ZERO;
ystart[1] = ONE;
tend = TWO*pi;
for (i = 0; i < neq; i++)

thres[i] = 1.0e-8;
errass = Nag_ErrorAssess_off;
hstart = ZERO;
method = Nag_RK_2_3;

/*
* Set control for output
*/

nout = 8;
tinc = (tend-tstart)/nout;

for (i = 1; i <= 2; i++)
{

if (i == 1)
tol = 1.0e-3;

else

d02 – Ordinary Differential d02pcc

Mark 24 d02pcc.7

tol = 1.0e-4;
/* nag_ode_ivp_rk_setup (d02pvc).
* Setup function for use with nag_ode_ivp_rk_range (d02pcc)
* and/or nag_ode_ivp_rk_onestep (d02pdc)
*/

nag_ode_ivp_rk_setup(neq, tstart, ystart, tend, tol, thres, method,
Nag_RK_range, errass, hstart, &opt, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_ode_ivp_rk_setup (d02pvc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("\nCalculation with tol = %10.1e\n\n", tol);
printf(" t y1 y2\n\n");
printf("%8.3f %8.3f %8.3f\n", tstart, ystart[0], ystart[1]);
for (j = nout-1; j >= 0; j--)

{
twant = tend - j*tinc;
/* nag_ode_ivp_rk_range (d02pcc).
* Ordinary differential equations solver, initial value
* problems over a range using Runge-Kutta methods
*/

nag_ode_ivp_rk_range(neq, f, twant, &tgot, ygot, ypgot, ymax, &opt,
&comm, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_ode_ivp_rk_range (d02pcc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%8.3f %8.3f %8.3f\n", tgot, ygot[0], ygot[1]);
}

printf("\nCost of the integration in evaluations of f is"
" %ld\n\n", opt.totfcn);

/* nag_ode_ivp_rk_free (d02ppc).
* Freeing function for use with the Runge-Kutta suite (d02p
* functions)
*/

nag_ode_ivp_rk_free(&opt);
}

END:
NAG_FREE(thres);
NAG_FREE(ygot);
NAG_FREE(ymax);
NAG_FREE(ypgot);
NAG_FREE(ystart);
return exit_status;

}
static void NAG_CALL f(Integer neq, double t, const double y[], double yp[],

Nag_User *comm)
{

Integer *use_comm = (Integer *)comm->p;

if (use_comm[0])
{

printf("(User-supplied callback f, first invocation.)\n");
use_comm[0] = 0;

}

yp[0] = y[1];
yp[1] = -y[0];

}

10.2 Program Data

None.

d02pcc NAG Library Manual

d02pcc.8 Mark 24

10.3 Program Results

nag_ode_ivp_rk_range (d02pcc) Example Program Results

Calculation with tol = 1.0e-03

t y1 y2

0.000 0.000 1.000
(User-supplied callback f, first invocation.)

0.785 0.707 0.707
1.571 0.999 -0.000
2.356 0.706 -0.706
3.142 -0.000 -0.999
3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of f is 124

Calculation with tol = 1.0e-04

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 -0.000
2.356 0.707 -0.707
3.142 -0.000 -1.000
3.927 -0.707 -0.707
4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000

Cost of the integration in evaluations of f is 235

d02 – Ordinary Differential d02pcc

Mark 24 d02pcc.9 (last)

	d02pcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Arguments
	neq
	f
	neq
	t
	y
	yp
	comm
	p

	twant
	tgot
	ygot
	ypgot
	ymax
	opt
	totfcn
	stpcst
	waste
	stpsok
	hnext

	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_INTERNAL_ERROR
	NE_MEMORY_FREED
	NE_NEQ
	NE_NO_SETUP
	NE_PREV_CALL
	NE_PREV_CALL_INI
	NE_RK_INVALID_CALL
	NE_RK_PCC_METHOD
	NE_RK_PDC_GLOBAL_ERROR_S
	NE_RK_PDC_GLOBAL_ERROR_T
	NE_RK_PDC_POINTS
	NE_RK_PDC_STEP
	NE_RK_PDC_TEND
	NE_RK_TGOT_EQ_TEND
	NE_RK_TGOT_RANGE_TEND
	NE_RK_TGOT_RANGE_TEND_CLOSE
	NE_RK_TWANT_CLOSE_TGOT
	NE_STIFF_PROBLEM
	NW_RK_TOO_MANY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

