
NAG Library Function Document

nag_ode_bvp_fd_lin_gen (d02gbc)

1 Purpose

nag_ode_bvp_fd_lin_gen (d02gbc) solves a general linear two-point boundary value problem for a
system of ordinary differential equations using a deferred correction technique.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd_lin_gen (Integer neq,

void (*fcnf)(Integer neq, double x, double f[], Nag_User *comm),

void (*fcng)(Integer neq, double x, double g[], Nag_User *comm),

double a, double b, double c[], double d[], double gam[], Integer mnp,
Integer *np, double x[], double y[], double tol, Nag_User *comm,
NagError *fail)

3 Description

nag_ode_bvp_fd_lin_gen (d02gbc) solves the linear two-point boundary value problem for a system of
neq ordinary differential equations in the interval a; b½ �. The system is written in the form

y0 ¼ F xð Þyþ g xð Þ ð1Þ

and the boundary conditions are written in the form

Cy að Þ þDy bð Þ ¼ � ð2Þ

Here F xð Þ, C and D are neq by neq matrices, and g xð Þ and � are neq component vectors. The
approximate solution to (1) and (2) is found using a finite difference method with deferred correction.
The algorithm is a specialisation of that used in the function nag_ode_bvp_fd_nonlin_gen (d02rac)
which solves a nonlinear version of (1) and (2). The nonlinear version of the algorithm is described fully
in Pereyra (1979).

You need to supply an absolute error tolerance and may also supply an initial mesh for the construction
of the finite difference equations (alternatively a default mesh is used). The algorithm constructs a
solution on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error
is everywhere less than your tolerance and so that the error is approximately equidistributed on the final
mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on
the other hand, the solution is required at several specific points, then you should use the interpolation
functions provided in Chapter e01 if these points do not themselves form a convenient mesh.

4 References

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag

d02 – Ordinary Differential d02gbc

Mark 24 d02gbc.1

../D02/d02rac.pdf
../E01/e01conts.pdf

5 Arguments

1: neq – Integer Input

On entry: the number of equations; that is neq is the order of system (1).

Constraint: neq � 2.

2: fcnf – function, supplied by the user External Function

fcnf must evaluate the matrix F xð Þ in (1) at a general point x.

The specification of fcnf is:

void fcnf (Integer neq, double x, double f[], Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the value of the independent variable x.

3: f½neq� neq� – double Output

On exit: the i; jð Þth element of the matrix F xð Þ, for i; j ¼ 1; 2; . . . ;neq where Fij is set
by f ½ i� 1ð Þ � neqþ j� 1ð Þ�. (See Section 10 for an example.)

4: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

3: fcng – function, supplied by the user External Function

fcng must evaluate the vector g xð Þ in (1) at a general point x.

The specification of fcng is:

void fcng (Integer neq, double x, double g[], Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the value of the independent variable x.

3: g½neq� – double Output

On exit: the ith element of the vector g xð Þ, for i ¼ 1; 2; . . . ; neq. (See Section 10 for an
example.)

4: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

d02gbc NAG Library Manual

d02gbc.2 Mark 24

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,

struct user *s = (struct user *)comm ! p, to obtain the original
object’s address with appropriate type. (See the argument comm below.)

If you do not wish to supply fcng the actual argument fcng must be the NAG defined null
function pointer NULLFN.

4: a – double Input

On entry: the left-hand boundary point, a.

5: b – double Input

On entry: the right-hand boundary point, b.

Constraint: b > a.

6: c½neq� neq� – double Input/Output
7: d½neq� neq� – double Input/Output
8: gam½neq� – double Input/Output

On entry: the arrays c and d must be set to the matrices C and D in (2). gam must be set to the
vector � in (2).

On exit: the rows of c and d and the components of gam are re-ordered so that the boundary
conditions are in the order:

(i) conditions on y að Þ only;

(ii) condition involving y að Þ and y bð Þ; and

(iii) conditions on y bð Þ only.

The function will be slightly more efficient if the arrays c, d and gam are ordered in this way
before entry, and in this event they will be unchanged on exit.

Note that the boundary conditions must be of boundary value type, that is neither C nor D may be
identically zero. Note also that the rank of the matrix C;D½ � must be neq for the problem to be
properly posed. Any violation of these conditions will lead to an error exit.

9: mnp – Integer Input

On entry: the maximum permitted number of mesh points.

Constraint: mnp � 32.

10: np – Integer * Input/Output

On entry: determines whether a default or user-supplied initial mesh is used.

np ¼ 0
np is set to a default value of 4 and a corresponding equispaced mesh
x½0�; x½1�; . . . ; x½np� 1� is used.

np � 4
You must define an initial mesh using the array x as described.

Constraint: np ¼ 0 or 4 � np � mnp.

On exit: the number of points in the final (returned) mesh.

d02 – Ordinary Differential d02gbc

Mark 24 d02gbc.3

11: x½mnp� – double Input/Output

On entry: if np � 4 (see np above), the first np elements must define an initial mesh. Otherwise
the elements of x need not be set.

Constraint:

a ¼ x½0� < x½1� < � � � < x½np� 1� ¼ b; ð3Þ

for np � 4.

On exit: x½0�; x½1�; . . . ; x½np� 1� define the final mesh (with the returned value of np) satisfying
the relation (3).

12: y½neq�mnp� – double Output

On exit: the approximate solution zj xið Þ satisfying (4), on the final mesh, that is

y½ j� 1ð Þ �mnpþ i� 1� ¼ zj xið Þ; i ¼ 1; 2; . . . ; np; j ¼ 1; 2; . . . ; neq;

where np is the number of points in the final mesh.

The remaining columns of y are not used.

13: tol – double Input

On entry: a positive absolute error tolerance.

If

a ¼ x1 < x2 < � � � < xnp ¼ b ð4Þ

is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xið Þ is the
jth component of the true solution of equation (1) (see Section 3) and the boundary conditions,
then, except in extreme cases, it is expected that

zj xið Þ � yj xið Þ
�� �� � tol; i ¼ 1; 2; . . . ;np; j ¼ 1; 2; . . . ;neq ð5Þ

Constraint: tol > 0:0.

14: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from fcnf and fcng. An object of the required type should be declared,
e.g., a structure, and its address assigned to the pointer comm!p by means of a cast to
Pointer in the calling program, e.g., comm.p = (Pointer)&s. The type pointer will be

void * with a C compiler that defines void * and char * otherwise.

15: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_2_REAL_ARG_LE

On entry, b ¼ valueh i while a ¼ valueh i. These arguments must satisfy b > a.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

d02gbc NAG Library Manual

d02gbc.4 Mark 24

../GENINT/essint.pdf
../GENINT/essint.pdf

NE_BOUND_COND_COL

More than neq columns of the neq by 2� neq matrix C;D½ � are identically zero. i.e., the
boundary conditions are rank deficient. The number of non-identically zero columns is valueh i.

NE_BOUND_COND_LC

At least one row of the neq by 2� neq matrix C;D½ � is a linear combination of the other rows,
i.e., the boundary conditions are rank deficient. The index of the first such row is valueh i.

NE_BOUND_COND_MAT

One of the matrices C or D is identically zero, i.e., the problem is of initial value and not of the
boundary type.

NE_BOUND_COND_NLC

At least one row of the neq by 2� neq matrix C;D½ � is a linear combination of the other rows
determined up to a numerical tolerance, i.e., the boundary conditions are rank deficient. The index
of first such row is valueh i. There is some doubt as to the rank deficiency of the boundary
conditions. However even if the boundary conditions are not rank deficient they are not posed in a
suitable form for use with this function. For example, if

C ¼ 1 0
1 �

� �
;D ¼ 1 0

1 0

� �
; � ¼ �1

�2

� �

and � is small enough, this error exit is likely to be taken. A better form for the boundary
conditions in this case would be

C ¼ 1 0
0 1

� �
; D ¼ 1 0

0 0

� �
; � ¼ �1

��1 �2 � �1ð Þ

� �

NE_BOUND_COND_ROW

Row valueh i of the array c and the corresponding row of array d are identically zero, i.e., the
boundary conditions are rank deficient.

NE_CONV_MESH

A finer mesh is required for the accuracy requested; that is mnp is not large enough.

NE_CONV_MESH_INIT

The Newton iteration failed to converge on the initial mesh. This may be due to the initial mesh
having too few points or the initial approximate solution being too inaccurate. Try using
nag_ode_bvp_fd_nonlin_gen (d02rac).

NE_CONV_ROUNDOFF

Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.

NE_INT_ARG_LT

On entry, mnp ¼ valueh i.
Constraint: mnp � 32.

On entry, neq ¼ valueh i.
Constraint: neq � 2.

NE_INT_RANGE_CONS_2

On entry, np ¼ valueh i and mnp ¼ valueh i. The argument np must satisfy either 4 � np � mnp
or np ¼ 0.

d02 – Ordinary Differential d02gbc

Mark 24 d02gbc.5

../D02/d02rac.pdf
../D02/d02rac.pdf

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_LF_B_MESH

On entry, the left boundary value a, has not been set to x½0�: a ¼ valueh i, x½0� ¼ valueh i.

NE_NOT_STRICTLY_INCREASING

The sequence x is not strictly increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.

NE_REAL_ARG_LE

On entry, tol must not be less than or equal to 0.0: tol ¼ valueh i.

NE_RT_B_MESH

On entry, the right boundary value b, has not been set to x½np� 1�: b ¼ valueh i,
x½np� 1� ¼ valueh i.

7 Accuracy

The solution returned by the function will be accurate to your tolerance as defined by the relation (4)
except in extreme circumstances. If too many points are specified in the initial mesh, the solution may be
more accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by the function depends on the difficulty of the problem, the number of mesh points (and
meshes) used and the number of deferred corrections.

In the case where you wish to solve a sequence of similar problems, the use of the final mesh from one
case is strongly recommended as the initial mesh for the next.

10 Example

We solve the problem (written as a first order system)

�y00 þ y0 ¼ 0

with boundary conditions

y 0ð Þ ¼ 0; y 1ð Þ ¼ 1

for the cases � ¼ 10�1 and � ¼ 10�2 using the default initial mesh in the first case, and the final mesh of
the first case as initial mesh for the second (more difficult) case. We give the solution and the error at
each mesh point to illustrate the accuracy of the method given the accuracy request tol ¼ 1:0e�3.

10.1 Program Text

/* nag_ode_bvp_fd_lin_gen (d02gbc) Example Program.
*
* Copyright 1992 Numerical Algorithms Group.
*
* Mark 3, 1992.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*

d02gbc NAG Library Manual

d02gbc.6 Mark 24

*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef __cplusplus
extern "C" {
#endif
static void NAG_CALL fcnf(Integer neq, double x, double f[], Nag_User *comm);
#ifdef __cplusplus
}
#endif

#define NEQ 2
#define MNP 70

#define C(I, J) c[(I) *tdc + J]
#define D(I, J) d[(I) *tdd + J]
#define Y(I, J) y[(I) *tdy + J]

int main(void)
{

Integer exit_status = 0, i, j, mnp, neq, np, tdc, tdd, tdy;
NagError fail;
Nag_User comm;
double a, b, *c = 0, *d = 0, eps, *gam = 0, tol, *x = 0, *y = 0;

INIT_FAIL(fail);

printf("nag_ode_bvp_fd_lin_gen (d02gbc) Example Program Results\n");

/* For communication with function fcnf()
* assign address of eps to comm.p.
*/

comm.p = (Pointer)

neq = NEQ;
mnp = MNP;
tol = 1.0e-3;
np = 0;
a = 0.0;
b = 1.0;
if (mnp >= 32 && neq >= 2)

{
if (!(c = NAG_ALLOC(NEQ*NEQ, double)) ||

!(d = NAG_ALLOC(NEQ*NEQ, double)) ||
!(gam = NAG_ALLOC(NEQ, double)) ||
!(x = NAG_ALLOC(MNP, double)) ||
!(y = NAG_ALLOC(NEQ*MNP, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tdc = neq;
tdd = neq;
tdy = mnp;

}
else

{
exit_status = 1;
return exit_status;

}

for (i = 0; i < neq; ++i)
{

gam[i] = 0.0;

d02 – Ordinary Differential d02gbc

Mark 24 d02gbc.7

for (j = 0; j < neq; ++j)
{

C(i, j) = 0.0;
D(i, j) = 0.0;

}
}

C(0, 0) = 1.0;
D(1, 0) = 1.0;
gam[1] = 1.0;
for (i = 1; i <= 2; ++i)

{
eps = pow(10.0, (double) -i);
printf("\nProblem with epsilon = %7.4f\n", eps);
/* nag_ode_bvp_fd_lin_gen (d02gbc).
* Ordinary differential equations solver, for general
* linear two-point boundary value problems, using a finite
* difference technique with deferred correction
*/

nag_ode_bvp_fd_lin_gen(neq, fcnf, NULLFN, a, b, c, d, gam,
mnp, &np, x, y, tol, &comm, &fail);

if (fail.code != NE_NOERROR)
{

printf("Error from nag_ode_bvp_fd_lin_gen (d02gbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("\nApproximate solution on final mesh of %ld points\n",

np);
printf(" X(I) Y(1,I)\n");
for (j = 0; j < np; ++j)

printf("%9.4f %9.4f\n", x[j], Y(0, j));
}

END:
NAG_FREE(c);
NAG_FREE(d);
NAG_FREE(gam);
NAG_FREE(x);
NAG_FREE(y);
return exit_status;

}

static void NAG_CALL fcnf(Integer neq, double x, double f[],
Nag_User *comm)

{
#define F(I, J) f[(I) *neq+J]

double *eps = (double *) comm->p;

F(0, 0) = 0.0;
F(0, 1) = 1.0;
F(1, 0) = 0.0;
F(1, 1) = -1.0/ *eps;

}

10.2 Program Data

None.

10.3 Program Results

nag_ode_bvp_fd_lin_gen (d02gbc) Example Program Results

Problem with epsilon = 0.1000

Approximate solution on final mesh of 15 points
X(I) Y(1,I)

0.0000 0.0000
0.0278 0.2425
0.0556 0.4263

d02gbc NAG Library Manual

d02gbc.8 Mark 24

0.1111 0.6708
0.1667 0.8112
0.2222 0.8917
0.2778 0.9379
0.3333 0.9644
0.4444 0.9883
0.5556 0.9962
0.6667 0.9988
0.7500 0.9995
0.8333 0.9998
0.9167 0.9999
1.0000 1.0000

Problem with epsilon = 0.0100

Approximate solution on final mesh of 49 points
X(I) Y(1,I)

0.0000 0.0000
0.0009 0.0884
0.0019 0.1690
0.0028 0.2425
0.0037 0.3095
0.0046 0.3706
0.0056 0.4262
0.0065 0.4770
0.0074 0.5232
0.0083 0.5654
0.0093 0.6038
0.0111 0.6708
0.0130 0.7265
0.0148 0.7727
0.0167 0.8111
0.0185 0.8431
0.0204 0.8696
0.0222 0.8916
0.0241 0.9100
0.0259 0.9252
0.0278 0.9378
0.0306 0.9529
0.0333 0.9643
0.0361 0.9730
0.0389 0.9795
0.0417 0.9845
0.0444 0.9883
0.0472 0.9911
0.0500 0.9933
0.0528 0.9949
0.0556 0.9961
0.0648 0.9985
0.0741 0.9994
0.0833 0.9998
0.0926 0.9999
0.1019 1.0000
0.1111 1.0000
0.1389 1.0000
0.1667 1.0000
0.2222 1.0000
0.2778 1.0000
0.3333 1.0000
0.4444 1.0000
0.5556 1.0000
0.6667 1.0000
0.7500 1.0000
0.8333 1.0000
0.9167 1.0000
1.0000 1.0000

d02 – Ordinary Differential d02gbc

Mark 24 d02gbc.9 (last)

	d02gbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Pereyra (1979)

	5 Arguments
	neq
	fcnf
	neq
	x
	f
	comm
	p

	fcng
	neq
	x
	g
	comm
	p

	a
	b
	c
	d
	gam
	mnp
	np
	x
	y
	tol
	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_REAL_ARG_LE
	NE_ALLOC_FAIL
	NE_BOUND_COND_COL
	NE_BOUND_COND_LC
	NE_BOUND_COND_MAT
	NE_BOUND_COND_NLC
	NE_BOUND_COND_ROW
	NE_CONV_MESH
	NE_CONV_MESH_INIT
	NE_CONV_ROUNDOFF
	NE_INT_ARG_LT
	NE_INT_RANGE_CONS_2
	NE_INTERNAL_ERROR
	NE_LF_B_MESH
	NE_NOT_STRICTLY_INCREASING
	NE_REAL_ARG_LE
	NE_RT_B_MESH

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

