NAG Library Function Document nag imldwt (c09cdc)

1 Purpose

nag_imldwt (c09cdc) computes the inverse one-dimensional multi-level discrete wavelet transform (DWT). This function reconstructs data from (possibly filtered or otherwise manipulated) wavelet transform coefficients calculated by nag_mldwt (c09ccc) from an original set of data. The initialization function nag_wfilt (c09aac) must be called first to set up the DWT options.

2 Specification

3 Description

nag_imldwt (c09cdc) performs the inverse operation of nag_mldwt (c09ccc). That is, given a set of wavelet coefficients, computed up to level $n_{\rm fwd}$ by nag_mldwt (c09ccc) using a DWT as set up by the initialization function nag_wfilt (c09aac), on a real data array of length n, nag_imldwt (c09cdc) will reconstruct the data array y_i , for $i=1,2,\ldots,n$, from which the coefficients were derived. If the original input dataset is level 0, then it is possible to terminate reconstruction at a higher level by specifying fewer than the number of levels used in the call to nag_mldwt (c09ccc). This results in a partial reconstruction.

4 References

None.

5 Arguments

1: **nwlinv** – Integer

Input

On entry: the number of levels to be used in the inverse multi-level transform. The number of levels must be less than or equal to $n_{\rm fwd}$, which has the value of argument **nwl** as used in the computation of the wavelet coefficients using nag_mldwt (c09ccc). The data will be reconstructed to level (**nwl** - **nwlinv**), where level 0 is the original input dataset provided to nag_mldwt (c09ccc).

Constraint: $1 \le \text{nwlinv} \le n_{\text{fwd}}$, where n_{fwd} is the value used in a preceding call to nag_mldwt (c09ccc).

2: lenc – Integer Input

On entry: the dimension of the array \mathbf{c} .

Constraint: lenc $\geq n_c$, where n_c is the total number of coefficients that correspond to a transform with **nwlinv** levels and is unchanged from the preceding call to nag mldwt (c09ccc).

3: $\mathbf{c}[\mathbf{lenc}] - \mathbf{const}$ double Input

On entry: the coefficients of a multi-level wavelet transform of the dataset.

Mark 24 c09cdc.1

c09cdc NAG Library Manual

Let q(i) be the number of coefficients (of each type) at level i, for $i=n_{\text{fwd}}, n_{\text{fwd}}-1, \ldots, 1$. Then, setting $k_1=q(n_{\text{fwd}})$ and $k_{j+1}=k_j+q(n_{\text{fwd}}-j+1)$, for $j=1,2,\ldots,n_{\text{fwd}}$, the coefficients are stored in ${\bf c}$ as follows:

 $\mathbf{c}[i-1], \text{ for } i = 1, 2, \dots, k_1$

Contains the level n_{fwd} approximation coefficients, $a_{n_{\text{fwd}}}$.

 $\mathbf{c}[i-1], \text{ for } i = k_1 + 1, \dots, k_2$

Contains the level n_{fwd} detail coefficients $d_{n_{\text{fwd}}}$.

 $\mathbf{c}[i-1], \text{ for } i = k_j + 1, \dots, k_{j+1}$

Contains the level $n_{\text{fwd}} - j + 1$ detail coefficients, for $j = 2, 3, \dots, n_{\text{fwd}}$.

The values q(i), for $i = n_{\text{fwd}}, n_{\text{fwd}} - 1, \dots, 1$, are contained in **dwtlev** which is produced as output by a preceding call to nag mldwt (c09ccc). See nag mldwt (c09ccc) for details.

4: **n** – Integer Input

On entry: n, the length of the data array, y, to be reconstructed. For a full reconstruction of **nwl** levels, where **nwl** is as supplied to nag_mldwt (c09ccc), this must be the same as argument **n** used in the call to nag_mldwt (c09ccc). For a partial reconstruction of **nwlinv** < **nwl**, this must be equal to $\mathbf{dwtlev[nwlinv} + 1]$, as returned from nag_mldwt (c09ccc).

5: $\mathbf{y}[\mathbf{n}]$ – double

On exit: the dataset reconstructed from the multi-level wavelet transform coefficients and the transformation options supplied to the initialization function nag wfilt (c09aac).

6: **icomm**[100] – const Integer

Communication Array

On entry: contains details of the discrete wavelet transform and the problem dimension for the forward transform previously computed by nag mldwt (c09ccc).

7: **fail** – NagError *

Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_DIM_LEN

On entry, **lenc** is set too small: **lenc** = $\langle value \rangle$. Constraint: **lenc** $\geq \langle value \rangle$.

NE_BAD_PARAM

On entry, argument $\langle value \rangle$ had an illegal value.

NE INITIALIZATION

Either the initialization function has not been called first or array icomm has been corrupted.

Either the initialization function was called with **wtrans** = Nag_SingleLevel or array **icomm** has been corrupted.

On entry, **n** is inconsistent with the value passed to the initialization function: $\mathbf{n} = \langle value \rangle$, **n** should be $\langle value \rangle$.

c09cdc.2 Mark 24

NE INT 2

```
On entry, nwlinv = \langle value \rangle. Constraint: nwlinv \geq 1.
```

On entry, **nwlinv** is larger than the number of levels computed by the preceding call to nag_mldwt (c09ccc): **nwlinv** = $\langle value \rangle$, expected = $\langle value \rangle$.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7 Accuracy

The accuracy of the wavelet transform depends only on the floating-point operations used in the convolution and downsampling and should thus be close to *machine precision*.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in nag mldwt (c09ccc).

Mark 24 c09cdc.3 (last)