NAG Library Function Document nag_zero_cont_func_brent_rcomm (c05azc)

1 Purpose

nag_zero_cont_func_brent_rcomm (c05azc) locates a simple zero of a continuous function in a given interval by using Brent's method, which is a combination of nonlinear interpolation, linear extrapolation and bisection. It uses reverse communication for evaluating the function.

2 Specification

```
#include <nag.h>
#include <nagc05.h>
void nag_zero_cont_func_brent_rcomm (double *x, double *y, double fx,
    double tōlx, Nag_Errorcon}trol ir, double c[], Integer *ind
    NagError *fail)
```


3 Description

You must supply \mathbf{x} and \mathbf{y} to define an initial interval $[a, b]$ containing a simple zero of the function $f(x)$ (the choice of \mathbf{x} and \mathbf{y} must be such that $f(\mathbf{x}) \times f(\mathbf{y}) \leq 0.0)$. The function combines the methods of bisection, nonlinear interpolation and linear extrapolation (see Dahlquist and Björck (1974)), to find a sequence of sub-intervals of the initial interval such that the final interval $[\mathbf{x}, \mathbf{y}]$ contains the zero and $|\mathbf{x}-\mathbf{y}|$ is less than some tolerance specified by tolx and $\mathbf{i r}$ (see Section 5). In fact, since the intermediate intervals $[\mathbf{x}, \mathbf{y}]$ are determined only so that $f(\mathbf{x}) \times f(\mathbf{y}) \leq 0.0$, it is possible that the final interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous). nag_zero_cont_func_brent_rcomm (c05azc) checks if the sign change is likely to correspond to a pole of f and gives an error return in this case.
A feature of the algorithm used by this function is that unlike some other methods it guarantees convergence within about $\left(\log _{2}[(b-a) / \delta]\right)^{2}$ function evaluations, where δ is related to the argument tolx. See Brent (1973) for more details.
nag_zero_cont_func_brent_rcomm (c05azc) returns to the calling program for each evaluation of $f(x)$. On each return you should set $\mathbf{f x}=f(\mathbf{x})$ and call nag_zero_cont_func_brent_rcomm (c05azc) again.
The function is a modified version of procedure 'zeroin' given by Brent (1973).

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice-Hall

Bus J C P and Dekker T J (1975) Two efficient algorithms with guaranteed convergence for finding a zero of a function ACM Trans. Math. Software 1 330-345
Dahlquist G and Björck Å (1974) Numerical Methods Prentice-Hall

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument ind. Between intermediate exits and re-entries, all arguments other than fx must remain unchanged.
\mathbf{x} - double *
Input/Output
2: $\quad \mathbf{y}-$ double *
On initial entry: \mathbf{x} and \mathbf{y} must define an initial interval $[a, b]$ containing the zero, such that $f(\mathbf{x}) \times f(\mathbf{y}) \leq 0.0$. It is not necessary that $\mathbf{x}<\mathbf{y}$.
On intermediate exit: \mathbf{x} contains the point at which f must be evaluated before re-entry to the function.

On final exit: \mathbf{x} and \mathbf{y} define a smaller interval containing the zero, such that $f(\mathbf{x}) \times f(\mathbf{y}) \leq 0.0$, and $|\mathbf{x}-\mathbf{y}|$ satisfies the accuracy specified by tolx and ir, unless an error has occurred. If fail.code $=$ NE_PROBABLE_POLE, \mathbf{x} and \mathbf{y} generally contain very good approximations to a pole; if fail.code $=$ NW_TOO_MUCH_ACC_REQUESTED, \mathbf{x} and \mathbf{y} generally contain very good approximations to the zero (see Section 6). If a point \mathbf{x} is found such that $f(\mathbf{x})=0.0$, then on final exit $\mathbf{x}=\mathbf{y}$ (in this case there is no guarantee that \mathbf{x} is a simple zero). In all cases, the value returned in \mathbf{x} is the better approximation to the zero.

3: $\quad \mathbf{f x}-$ double
Input
On initial entry: if ind $=1$, $\mathbf{f x}$ need not be set.
If ind $=-1$, $\mathbf{f x}$ must contain $f(\mathbf{x})$ for the initial value of \mathbf{x}.
On intermediate re-entry: must contain $f(\mathbf{x})$ for the current value of \mathbf{x}.
4: tolx - double
Input
On initial entry: the accuracy to which the zero is required. The type of error test is specified by ir.

Constraint: tolx >0.0.
5: \quad ir - Nag_ErrorControl
Input
On initial entry: indicates the type of error test.
ir $=$ Nag_Mixed
The test is: $|\mathbf{x}-\mathbf{y}| \leq 2.0 \times \mathbf{t o l x} \times \max (1.0,|\mathbf{x}|)$.
$\mathbf{i r}=$ Nag_Absolute
The test is: $|\mathbf{x}-\mathbf{y}| \leq 2.0 \times$ tolx.
$\mathbf{i r}=$ Nag_Relative
The test is: $|\mathbf{x}-\mathbf{y}| \leq 2.0 \times$ tolx $\times|\mathbf{x}|$.
Suggested value: $\mathbf{i r}=$ Nag_Mixed.
Constraint: $\mathbf{i r}=$ Nag_Mixed, Nag_Absolute or Nag_Relative.
$\mathbf{c}[17]$ - double
Input/Output
On initial entry: if ind $=1$, no elements of \mathbf{c} need be set.
If ind $=-1, \mathbf{c}[0]$ must contain $f(\mathbf{y})$, other elements of \mathbf{c} need not be set.
On final exit: is undefined.
7: ind - Integer *
Input/Output
On initial entry: must be set to 1 or -1 .
ind $=1$
$\mathbf{f x}$ and $\mathbf{c}[0]$ need not be set.
ind $=-1$
$\mathbf{f x}$ and $\mathbf{c}[0]$ must contain $f(\mathbf{x})$ and $f(\mathbf{y})$ respectively.

On intermediate exit: contains 2,3 or 4 . The calling program must evaluate f at \mathbf{x}, storing the result in fx, and re-enter nag_zero_cont_func_brent_rcomm (c05azc) with all other arguments unchanged.
On final exit: contains 0 .
Constraint: on entry ind $=-1,1,2,3$ or 4 .
8: \quad fail - NagError *
Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument \langle value \rangle had an illegal value.

NE_INT

On entry, ind $=\langle$ value \rangle.
Constraint: ind $=-1,1,2,3$ or 4 .

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

NE_NOT_SIGN_CHANGE

On entry, $f(\mathbf{x})$ and $f(\mathbf{y})$ have the same sign with neither equalling 0.0: $f(\mathbf{x})=\langle$ value \rangle and $f(\mathbf{y})=\langle$ value \rangle.

NE_PROBABLE_POLE

The final interval may contain a pole rather than a zero. Note that this error exit is not completely reliable: it may be taken in extreme cases when $[\mathbf{x}, \mathbf{y}]$ contains a zero, or it may not be taken when $[\mathbf{x}, \mathbf{y}]$ contains a pole. Both these cases occur most frequently when tolx is large.

NE_REAL

On entry, tolx $=\langle$ value \rangle.
Constraint: tolx >0.0.

NW_TOO_MUCH_ACC_REQUESTED

The tolerance tolx has been set too small for the problem being solved. However, the values \mathbf{x} and \mathbf{y} returned may well be good approximations to the zero. tolx $=\langle$ value \rangle.

7 Accuracy

The accuracy of the final value \mathbf{x} as an approximation of the zero is determined by tolx and ir (see Section 5). A relative accuracy criterion ($\mathbf{i r}=2$) should not be used when the initial values \mathbf{x} and \mathbf{y} are of different orders of magnitude. In this case a change of origin of the independent variable may be appropriate. For example, if the initial interval $[\mathbf{x}, \mathbf{y}]$ is transformed linearly to the interval [1,2], then the zero can be determined to a precise number of figures using an absolute $(\mathbf{i r}=1$) or relative ($\mathbf{i r}=2$) error test and the effect of the transformation back to the original interval can also be determined. Except for the accuracy check, such a transformation has no effect on the calculation of the zero.

8 Parallelism and Performance

Not applicable.

9 Further Comments

For most problems, the time taken on each call to nag_zero_cont_func_brent_rcomm (c05azc) will be negligible compared with the time spent evaluating $f(x)$ between calls to nag_zero_cont_func_brent_rcomm (c05azc).

If the calculation terminates because $f(\mathbf{x})=0.0$, then on return \mathbf{y} is set to \mathbf{x}. (In fact, $\mathbf{y}=\mathbf{x}$ on return only in this case and, possibly, when fail.code $=$ NW_TOO_MUCH_ACC_REQUESTED.) There is no guarantee that the value returned in \mathbf{x} corresponds to a simple root and you should check whether it does. One way to check this is to compute the derivative of f at the point \mathbf{x}, preferably analytically, or, if this is not possible, numerically, perhaps by using a central difference estimate. If $f^{\prime}(\mathbf{x})=0.0$, then \mathbf{x} must correspond to a multiple zero of f rather than a simple zero.

10 Example

This example calculates a zero of $e^{-x}-x$ with an initial interval $[0,1], \mathbf{t o l x}=1.0 \mathrm{e}-5$ and a mixed error test.

10.1 Program Text

```
/* nag_zero_cont_func_brent_rcomm (c05azc) Example Program.
    *
    * Copyright 2006 Numerical Algorithms Group.
    * Mark 9, 2009.
    */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>
int main(void)
{
    /* Scalars */
    Integer exit_status = 0;
    double fx, tolx, x, y;
    Integer ind;
    Nag_ErrorControl ir;
    /* Arrays */
    double c[17];
    NagError fail;
    INIT_FAIL(fail);
    printf("nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results\n");
    printf("\n Iterations\n");
    tolx = 1e-05;
    x = 0.0;
    y = 1.0;
    ir = Nag_Mixed;
    ind = 1;
    fx = 0.0;
    /* nag_zero_cont_func_brent_rcomm (c05azc).
    * Locates a simple zero of a continuous function.
    * Reverse communication.
    */
    while (ind != 0)
        {
            nag_zero_cont_func_brent_rcomm(&x, &y, fx, tolx, ir, c, &ind, &fail);
            if (ind != 0)
                fx = exp(-x) - x;
                    printf(" x = %8.5f fx = %13.4e ind = %2ld\n", x, fx,
```

```
                                    ind);
                }
        }
    if (fail.code == NE_NOERROR)
        {
        printf("\n Solution\n");
        printf(" x = %8.5f y = %8.5f\n", x, y);
    }
    else
        {
        printf("%s\n", fail.message);
        if (fail.code == NE_PROBABLE_POLE ||
                fail.code == NW_TOO_MUCH_ACC_REQUESTED)
            {
                printf(" x = %8.5f y = %8.5f\n", x, y);
            }
        exit_status = 1;
        goto END;
    }
END:
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results
Iterations
x = 0.00000 fx = 1.0000e+00 ind = 2
x = 1.00000 fx = -6.3212e-01 ind = 3
x = 0.61270 fx = -7.0814e-02 ind = 4
x = 0.56707 fx = 1.1542e-04 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4
x = 0.56713 fx = 1.4727e-05 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4
Solution
x = 0.56714 y = 0.56713
```

