
NAG Library Function Document

nag_zero_cont_func_brent_rcomm (c05azc)

1 Purpose

nag_zero_cont_func_brent_rcomm (c05azc) locates a simple zero of a continuous function in a given
interval by using Brent’s method, which is a combination of nonlinear interpolation, linear extrapolation
and bisection. It uses reverse communication for evaluating the function.

2 Specification

#include <nag.h>
#include <nagc05.h>

void nag_zero_cont_func_brent_rcomm (double *x, double *y, double fx,
double tolx, Nag_ErrorControl ir, double c[], Integer *ind,
NagError *fail)

3 Description

You must supply x and y to define an initial interval a; b½ � containing a simple zero of the function f xð Þ
(the choice of x and y must be such that f xð Þ � f yð Þ � 0:0). The function combines the methods of
bisection, nonlinear interpolation and linear extrapolation (see Dahlquist and Björck (1974)), to find a
sequence of sub-intervals of the initial interval such that the final interval x; y½ � contains the zero and
x� yj j is less than some tolerance specified by tolx and ir (see Section 5). In fact, since the intermediate

intervals x; y½ � are determined only so that f xð Þ � f yð Þ � 0:0, it is possible that the final interval may
contain a discontinuity or a pole of f (violating the requirement that f be continuous).
nag_zero_cont_func_brent_rcomm (c05azc) checks if the sign change is likely to correspond to a pole
of f and gives an error return in this case.

A feature of the algorithm used by this function is that unlike some other methods it guarantees

convergence within about log2 b� að Þ=�½ �ð Þ2 function evaluations, where � is related to the argument
tolx. See Brent (1973) for more details.

nag_zero_cont_func_brent_rcomm (c05azc) returns to the calling program for each evaluation of f xð Þ.
On each return you should set fx ¼ f xð Þ and call nag_zero_cont_func_brent_rcomm (c05azc) again.

The function is a modified version of procedure ‘zeroin’ given by Brent (1973).

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

Bus J C P and Dekker T J (1975) Two efficient algorithms with guaranteed convergence for finding a
zero of a function ACM Trans. Math. Software 1 330–345

Dahlquist G and Björck Å (1974) Numerical Methods Prentice–Hall

5 Arguments

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument ind. Between intermediate exits and re-entries,
all arguments other than fx must remain unchanged.

c05 – Roots of One or More Transcendental Equations c05azc

Mark 24 c05azc.1

1: x – double * Input/Output
2: y – double * Input/Output

On initial entry: x and y must define an initial interval a; b½ � containing the zero, such that
f xð Þ � f yð Þ � 0:0. It is not necessary that x < y.

On intermediate exit: x contains the point at which f must be evaluated before re-entry to the
function.

On final exit: x and y define a smaller interval containing the zero, such that f xð Þ � f yð Þ � 0:0,
and x� yj j satisfies the accuracy specified by tolx and ir, unless an error has occurred. If
fail:code ¼ NE_PROBABLE_POLE, x and y generally contain very good approximations to a
pole; if fail:code ¼ NW_TOO_MUCH_ACC_REQUESTED, x and y generally contain very good
approximations to the zero (see Section 6). If a point x is found such that f xð Þ ¼ 0:0, then on final
exit x ¼ y (in this case there is no guarantee that x is a simple zero). In all cases, the value
returned in x is the better approximation to the zero.

3: fx – double Input

On initial entry: if ind ¼ 1, fx need not be set.

If ind ¼ �1, fx must contain f xð Þ for the initial value of x.

On intermediate re-entry: must contain f xð Þ for the current value of x.

4: tolx – double Input

On initial entry: the accuracy to which the zero is required. The type of error test is specified by
ir.

Constraint: tolx > 0:0.

5: ir – Nag_ErrorControl Input

On initial entry: indicates the type of error test.

ir ¼ Nag Mixed
The test is: x� yj j � 2:0� tolx�max 1:0; xj jð Þ.

ir ¼ Nag Absolute
The test is: x� yj j � 2:0� tolx.

ir ¼ Nag Relative
The test is: x� yj j � 2:0� tolx� xj j.

Suggested value: ir ¼ Nag Mixed.

Constraint: ir ¼ Nag Mixed, Nag Absolute or Nag Relative.

6: c½17� – double Input/Output

On initial entry: if ind ¼ 1, no elements of c need be set.

If ind ¼ �1, c½0� must contain f yð Þ, other elements of c need not be set.

On final exit: is undefined.

7: ind – Integer * Input/Output

On initial entry: must be set to 1 or �1.

ind ¼ 1
fx and c½0� need not be set.

ind ¼ �1
fx and c½0� must contain f xð Þ and f yð Þ respectively.

c05azc NAG Library Manual

c05azc.2 Mark 24

On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at x, storing the
result in fx, and re-enter nag_zero_cont_func_brent_rcomm (c05azc) with all other arguments
unchanged.

On final exit: contains 0.

Constraint: on entry ind ¼ �1, 1, 2, 3 or 4.

8: fail – NagError * Input/Output

The NAG error argument (see Section 3.6 in the Essential Introduction).

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, ind ¼ valueh i.
Constraint: ind ¼ �1, 1, 2, 3 or 4.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NOT_SIGN_CHANGE

On entry, f xð Þ and f yð Þ have the same sign with neither equalling 0:0: f xð Þ ¼ valueh i and
f yð Þ ¼ valueh i.

NE_PROBABLE_POLE

The final interval may contain a pole rather than a zero. Note that this error exit is not completely
reliable: it may be taken in extreme cases when x; y½ � contains a zero, or it may not be taken when
x; y½ � contains a pole. Both these cases occur most frequently when tolx is large.

NE_REAL

On entry, tolx ¼ valueh i.
Constraint: tolx > 0:0.

NW_TOO_MUCH_ACC_REQUESTED

The tolerance tolx has been set too small for the problem being solved. However, the values x and
y returned may well be good approximations to the zero. tolx ¼ valueh i.

7 Accuracy

The accuracy of the final value x as an approximation of the zero is determined by tolx and ir (see
Section 5). A relative accuracy criterion (ir ¼ 2) should not be used when the initial values x and y are
of different orders of magnitude. In this case a change of origin of the independent variable may be
appropriate. For example, if the initial interval x; y½ � is transformed linearly to the interval 1; 2½ �, then the
zero can be determined to a precise number of figures using an absolute (ir ¼ 1) or relative (ir ¼ 2) error
test and the effect of the transformation back to the original interval can also be determined. Except for
the accuracy check, such a transformation has no effect on the calculation of the zero.

8 Parallelism and Performance

Not applicable.

c05 – Roots of One or More Transcendental Equations c05azc

Mark 24 c05azc.3

../GENINT/essint.pdf
../GENINT/essint.pdf

9 Further Comments

For most problems, the time taken on each call to nag_zero_cont_func_brent_rcomm (c05azc) will be
n e g l i g i b l e c o m p a r e d w i t h t h e t i m e s p e n t e v a l u a t i n g f xð Þ b e t w e e n c a l l s t o
nag_zero_cont_func_brent_rcomm (c05azc).

If the calculation terminates because f xð Þ ¼ 0:0, then on return y is set to x. (In fact, y ¼ x on return
only in this case and, possibly, when fail:code ¼ NW_TOO_MUCH_ACC_REQUESTED.) There is no
guarantee that the value returned in x corresponds to a simple root and you should check whether it
does. One way to check this is to compute the derivative of f at the point x, preferably analytically, or, if
this is not possible, numerically, perhaps by using a central difference estimate. If f 0 xð Þ ¼ 0:0, then x
must correspond to a multiple zero of f rather than a simple zero.

10 Example

This example calculates a zero of e�x � x with an initial interval 0; 1½ �, tolx ¼ 1:0e�5 and a mixed error
test.

10.1 Program Text

/* nag_zero_cont_func_brent_rcomm (c05azc) Example Program.
*
* Copyright 2006 Numerical Algorithms Group.
*
* Mark 9, 2009.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagc05.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
double fx, tolx, x, y;
Integer ind;
Nag_ErrorControl ir;
/* Arrays */
double c[17];
NagError fail;

INIT_FAIL(fail);

printf("nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results\n");
printf("\n Iterations\n");

tolx = 1e-05;
x = 0.0;
y = 1.0;
ir = Nag_Mixed;
ind = 1;
fx = 0.0;
/* nag_zero_cont_func_brent_rcomm (c05azc).
* Locates a simple zero of a continuous function.
* Reverse communication.
*/

while (ind != 0)
{

nag_zero_cont_func_brent_rcomm(&x, &y, fx, tolx, ir, c, &ind, &fail);

if (ind != 0)
{

fx = exp(-x) - x;
printf(" x = %8.5f fx = %13.4e ind = %2ld\n", x, fx,

c05azc NAG Library Manual

c05azc.4 Mark 24

ind);
}

}

if (fail.code == NE_NOERROR)
{

printf("\n Solution\n");
printf(" x = %8.5f y = %8.5f\n", x, y);

}
else

{
printf("%s\n", fail.message);
if (fail.code == NE_PROBABLE_POLE ||

fail.code == NW_TOO_MUCH_ACC_REQUESTED)
{

printf(" x = %8.5f y = %8.5f\n", x, y);
}

exit_status = 1;
goto END;

}

END:
return exit_status;

}

10.2 Program Data

None.

10.3 Program Results

nag_zero_cont_func_brent_rcomm (c05azc) Example Program Results

Iterations
x = 0.00000 fx = 1.0000e+00 ind = 2
x = 1.00000 fx = -6.3212e-01 ind = 3
x = 0.61270 fx = -7.0814e-02 ind = 4
x = 0.56707 fx = 1.1542e-04 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4
x = 0.56713 fx = 1.4727e-05 ind = 4
x = 0.56714 fx = -9.4481e-07 ind = 4

Solution
x = 0.56714 y = 0.56713

c05 – Roots of One or More Transcendental Equations c05azc

Mark 24 c05azc.5 (last)

	c05azc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brent (1973)
	Bus and Dekker (1975)
	Dahlquist and Bjorck (1974)

	5 Arguments
	x
	y
	fx
	tolx
	ir
	c
	ind
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NOT_SIGN_CHANGE
	NE_PROBABLE_POLE
	NE_REAL
	NW_TOO_MUCH_ACC_REQUESTED

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Library Manual, Mark 24
	Introduction
	Essential Introduction
	NAG C Library News, Mark 24
	Multithreaded Functions
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords and GAMS Search

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	c09 - Wavelet Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d04 - Numerical Differentiation
	Chapter Introduction

	d05 - Integral Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	e05 - Global Optimization of a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

	x07 - IEEE Arithmetic
	Chapter Introduction

