f16 Chapter Contents
f16 Chapter Introduction
NAG Library Manual

2  Specification

 #include #include
 void nag_iload (Integer n, Integer alpha, Integer x[], Integer incx, NagError *fail)

3  Description

 $x ← α,α,…,αT ,$
where $x$ is an $n$-element integer vector and $\alpha$ is an integer scalar.

4  References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5  Arguments

1:     nIntegerInput
On entry: $n$, the number of elements in $x$.
Constraint: ${\mathbf{n}}\ge 0$.
2:     alphaIntegerInput
On entry: the scalar $\alpha$.
3:     x[$\mathit{dim}$]IntegerOutput
Note: the dimension, dim, of the array x must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,1+\left({\mathbf{n}}-1\right)\left|{\mathbf{incx}}\right|\right)$.
On exit: the scalar $\alpha$ is scattered with a stride of incx in x. Intermediate elements of x are unchanged.
4:     incxIntegerInput
On entry: the increment in the subscripts of x between successive elements of $x$.
Constraint: ${\mathbf{incx}}\ne 0$.
5:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_INT
On entry, ${\mathbf{incx}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{incx}}\ne 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.

7  Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

Not applicable.