nag_dorgbr (f08kfc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_dorgbr (f08kfc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_dorgbr (f08kfc) generates one of the real orthogonal matrices Q or PT which were determined by nag_dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2  Specification

#include <nag.h>
#include <nagf08.h>
void  nag_dorgbr (Nag_OrderType order, Nag_VectType vect, Integer m, Integer n, Integer k, double a[], Integer pda, const double tau[], NagError *fail)

3  Description

nag_dorgbr (f08kfc) is intended to be used after a call to nag_dgebrd (f08kec), which reduces a real rectangular matrix A to bidiagonal form B by an orthogonal transformation: A=QBPT. nag_dgebrd (f08kec) represents the matrices Q and PT as products of elementary reflectors.
This function may be used to generate Q or PT explicitly as square matrices, or in some cases just the leading columns of Q or the leading rows of PT.
The various possibilities are specified by the arguments vect, m, n and k. The appropriate values to cover the most likely cases are as follows (assuming that A was an m by n matrix):
1. To form the full m by m matrix Q:
nag_dorgbr(order,Nag_FormQ,m,m,n,...)
(note that the array a must have at least m columns).
2. If m>n, to form the n leading columns of Q:
nag_dorgbr(order,Nag_FormQ,m,n,n,...)
3. To form the full n by n matrix PT:
nag_dorgbr(order,Nag_FormP,n,n,m,...)
(note that the array a must have at least n rows).
4. If m<n, to form the m leading rows of PT:
nag_dorgbr(order,Nag_FormP,m,n,m,...)

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     vectNag_VectTypeInput
On entry: indicates whether the orthogonal matrix Q or PT is generated.
vect=Nag_FormQ
Q is generated.
vect=Nag_FormP
PT is generated.
Constraint: vect=Nag_FormQ or Nag_FormP.
3:     mIntegerInput
On entry: m, the number of rows of the orthogonal matrix Q or PT to be returned.
Constraint: m0.
4:     nIntegerInput
On entry: n, the number of columns of the orthogonal matrix Q or PT to be returned.
Constraints:
  • n0;
  • if vect=Nag_FormQ and m>k, mnk;
  • if vect=Nag_FormQ and mk, m=n;
  • if vect=Nag_FormP and n>k, nmk;
  • if vect=Nag_FormP and nk, n=m.
5:     kIntegerInput
On entry: if vect=Nag_FormQ, the number of columns in the original matrix A.
If vect=Nag_FormP, the number of rows in the original matrix A.
Constraint: k0.
6:     a[dim]doubleInput/Output
Note: the dimension, dim, of the array a must be at least
  • max1,pda×n when order=Nag_ColMajor;
  • max1,m×pda when order=Nag_RowMajor.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_dgebrd (f08kec).
On exit: the orthogonal matrix Q or PT, or the leading rows or columns thereof, as specified by vectm and n.
If order=Nag_ColMajor, the i,jth element of the matrix is stored in a[j-1×pda+i-1].
If order=Nag_RowMajor, the i,jth element of the matrix is stored in a[i-1×pda+j-1].
7:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
  • if order=Nag_ColMajor, pdamax1,m;
  • if order=Nag_RowMajor, pdamax1,n.
8:     tau[dim]const doubleInput
Note: the dimension, dim, of the array tau must be at least
  • max1,minm,k when vect=Nag_FormQ;
  • max1,minn,k when vect=Nag_FormP.
On entry: further details of the elementary reflectors, as returned by nag_dgebrd (f08kec) in its argument tauq if vect=Nag_FormQ, or in its argument taup if vect=Nag_FormP.
9:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_ENUM_INT_3
On entry, vect=value, m=value, n=value and k=value.
Constraint: n0 and
if vect=Nag_FormQ and m>k, mnk;
if vect=Nag_FormQ and mk, m=n;
if vect=Nag_FormP and n>k, nmk;
if vect=Nag_FormP and nk, n=m.
NE_INT
On entry, k=value.
Constraint: k0.
On entry, m=value.
Constraint: m0.
On entry, pda=value.
Constraint: pda>0.
NE_INT_2
On entry, pda=value and m=value.
Constraint: pdamax1,m.
On entry, pda=value and n=value.
Constraint: pdamax1,n.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7  Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
E2 = Oε ,
where ε is the machine precision. A similar statement holds for the computed matrix PT.

8  Parallelism and Performance

nag_dorgbr (f08kfc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dorgbr (f08kfc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the Users' Note for your implementation for any additional implementation-specific information.

9  Further Comments

The total number of floating-point operations for the cases listed in Section 3 are approximately as follows:
1. To form the whole of Q:
  • 43n3m2-3mn+n2 if m>n,
  • 43m3 if mn;
2. To form the n leading columns of Q when m>n:
  • 23 n2 3m-n ;
3. To form the whole of PT:
  • 43n3 if mn,
  • 43m3n2-3mn+m2 if m<n;
4. To form the m leading rows of PT when m<n:
  • 23 m2 3n-m .
The complex analogue of this function is nag_zungbr (f08ktc).

10  Example

For this function two examples are presented, both of which involve computing the singular value decomposition of a matrix A, where
A = -0.57 -1.28 -0.39 0.25 -1.93 1.08 -0.31 -2.14 2.30 0.24 0.40 -0.35 -1.93 0.64 -0.66 0.08 0.15 0.30 0.15 -2.13 -0.02 1.03 -1.43 0.50
in the first example and
A = -5.42 3.28 -3.68 0.27 2.06 0.46 -1.65 -3.40 -3.20 -1.03 -4.06 -0.01 -0.37 2.35 1.90 4.31 -1.76 1.13 -3.15 -0.11 1.99 -2.70 0.26 4.50
in the second. A must first be reduced to tridiagonal form by nag_dgebrd (f08kec). The program then calls nag_dorgbr (f08kfc) twice to form Q and PT, and passes these matrices to nag_dbdsqr (f08mec), which computes the singular value decomposition of A.

10.1  Program Text

Program Text (f08kfce.c)

10.2  Program Data

Program Data (f08kfce.d)

10.3  Program Results

Program Results (f08kfce.r)


nag_dorgbr (f08kfc) (PDF version)
f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014