f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_dstev (f08jac)

## 1  Purpose

nag_dstev (f08jac) computes all the eigenvalues and, optionally, all the eigenvectors of a real $n$ by $n$ symmetric tridiagonal matrix $A$.

## 2  Specification

 #include #include
 void nag_dstev (Nag_OrderType order, Nag_JobType job, Integer n, double d[], double e[], double z[], Integer pdz, NagError *fail)

## 3  Description

nag_dstev (f08jac) computes all the eigenvalues and, optionally, all the eigenvectors of $A$ using a combination of the $QR$ and $QL$ algorithms, with an implicit shift.

## 4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:     jobNag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix.
Constraint: ${\mathbf{n}}\ge 0$.
4:     d[$\mathit{dim}$]doubleInput/Output
Note: the dimension, dim, of the array d must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: the $n$ diagonal elements of the tridiagonal matrix $A$.
On exit: if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the eigenvalues in ascending order.
5:     e[$\mathit{dim}$]doubleInput/Output
Note: the dimension, dim, of the array e must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}-1\right)$.
On entry: the $\left(n-1\right)$ subdiagonal elements of the tridiagonal matrix $A$.
On exit: the contents of e are destroyed.
6:     z[$\mathit{dim}$]doubleOutput
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, z contains the orthonormal eigenvectors of the matrix $A$, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{d}}\left[i-1\right]$.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
7:     pdzIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_CONVERGENCE
The algorithm failed to converge; $⟨\mathit{\text{value}}⟩$ off-diagonal elements of e did not converge to zero.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdz}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_INT
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pdz}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

## 8  Parallelism and Performance

nag_dstev (f08jac) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dstev (f08jac) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

The total number of floating-point operations is proportional to ${n}^{2}$ if ${\mathbf{job}}=\mathrm{Nag_EigVals}$ and is proportional to ${n}^{3}$ if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$.

## 10  Example

This example finds all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix
 $A = 1 1 0 0 1 4 2 0 0 2 9 3 0 0 3 16 ,$
together with approximate error bounds for the computed eigenvalues and eigenvectors.

### 10.1  Program Text

Program Text (f08jace.c)

### 10.2  Program Data

Program Data (f08jace.d)

### 10.3  Program Results

Program Results (f08jace.r)