/* nag_zhpsvx (f07ppc) Example Program. * * Copyright 2004 Numerical Algorithms Group. * * Mark 23, 2011. */ #include #include #include #include #include int main(void) { /* Scalars */ double rcond; Integer exit_status = 0, i, j, n, nrhs, pdb, pdx; /* Arrays */ Complex *afp = 0, *ap = 0, *b = 0, *x = 0; double *berr = 0, *ferr = 0; Integer *ipiv = 0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_UploType uplo; #ifdef NAG_COLUMN_MAJOR #define A_UPPER(I, J) ap[J*(J-1)/2 + I - 1] #define A_LOWER(I, J) ap[(2*n-J)*(J-1)/2 + I - 1] #define B(I, J) b[(J-1)*pdb + I - 1] order = Nag_ColMajor; #else #define A_LOWER(I, J) ap[I*(I-1)/2 + J - 1] #define A_UPPER(I, J) ap[(2*n-I)*(I-1)/2 + J - 1] #define B(I, J) b[(I-1)*pdb + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); printf("nag_zhpsvx (f07ppc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n]"); scanf("%ld%ld%*[^\n]", &n, &nrhs); if (n < 0 || nrhs < 0) { printf("Invalid n or nrhs\n"); exit_status = 1; goto END; } scanf(" %39s%*[^\n]", nag_enum_arg); /* nag_enum_name_to_value (x04nac). * Converts NAG enum member name to value */ uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg); /* Allocate memory */ if (!(afp = NAG_ALLOC(n*(n+1)/2, Complex)) || !(ap = NAG_ALLOC(n*(n+1)/2, Complex)) || !(b = NAG_ALLOC(n * nrhs, Complex)) || !(x = NAG_ALLOC(n * nrhs, Complex)) || !(berr = NAG_ALLOC(nrhs, double)) || !(ferr = NAG_ALLOC(nrhs, double)) || !(ipiv = NAG_ALLOC(n, Integer))) { printf("Allocation failure\n"); exit_status = -1; goto END; } #ifdef NAG_COLUMN_MAJOR pdb = n; pdx = n; #else pdb = nrhs; pdx = nrhs; #endif /* Read the triangular part of the matrix A from data file */ if (uplo == Nag_Upper) for (i = 1; i <= n; ++i) for (j = i; j <= n; ++j) scanf(" ( %lf , %lf )", &A_UPPER(i, j).re, &A_UPPER(i, j).im); else if (uplo == Nag_Lower) for (i = 1; i <= n; ++i) for (j = 1; j <= i; ++j) scanf(" ( %lf , %lf )", &A_LOWER(i, j).re, &A_LOWER(i, j).im); scanf("%*[^\n]"); /* Read B from data file */ for (i = 1; i <= n; ++i) for (j = 1; j <= nrhs; ++j) scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im); scanf("%*[^\n]"); /* Solve the equations AX = B for X using nag_zhpsvx (f07ppc). */ nag_zhpsvx(order, Nag_NotFactored, uplo, n, nrhs, ap, afp, ipiv, b, pdb, x, pdx, &rcond, ferr, berr, &fail); if (fail.code != NE_NOERROR && fail.code != NE_SINGULAR) { printf("Error from nag_zhpsvx (f07ppc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Print solution using nag_gen_complx_mat_print_comp (x04dbc). */ fflush(stdout); nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx, Nag_BracketForm, "%7.4f", "Solution(s)", Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Print error bounds and condition number */ printf("\nBackward errors (machine-dependent)\n"); for (j = 0; j < nrhs; ++j) printf("%11.1e%s", berr[j], j%7 == 6?"\n":" "); printf("\n\nEstimated forward error bounds (machine-dependent)\n"); for (j = 0; j < nrhs; ++j) printf("%11.1e%s", ferr[j], j%7 == 6?"\n":" "); printf("\n\nEstimate of reciprocal condition number\n%11.1e\n", rcond); if (fail.code == NE_SINGULAR) { printf("Error from nag_zhpsvx (f07ppc).\n%s\n", fail.message); exit_status = 1; } END: NAG_FREE(afp); NAG_FREE(ap); NAG_FREE(b); NAG_FREE(x); NAG_FREE(berr); NAG_FREE(ferr); NAG_FREE(ipiv); return exit_status; } #undef A_UPPER #undef A_LOWER #undef B