/* nag_sum_fft_real_3d (c06pyc) Example Program. * * Copyright 2013 Numerical Algorithms Group. * * Mark 24, 2013. */ #include #include #include #include int main(void) { /* Scalars */ Integer exit_status = 0, k, n1, n2, n3; /* Arrays */ Complex *y = 0; double *x = 0; char title[30]; /* Nag Types */ NagError fail; INIT_FAIL(fail); printf("nag_sum_fft_real_3d (c06pyc) Example Program Results\n"); /* Read dimensions of array from data file. */ scanf("%*[^\n] %ld%ld%ld%*[^\n]", &n1, &n2, &n3); if (!(x = NAG_ALLOC(n1*n2*n3, double)) || !(y = NAG_ALLOC((n1/2+1)*n2*n3, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } /* Read array values from data file and print out. */ for (k = 0; k < n1*n2*n3; k++) scanf("%lf", &x[k]); printf("\nBelow we define X(i,j,k)=x[k*n1*n2+j*n1+i]"); printf(" where i and j are the row and column \n"); printf("indices of the matrices printed."); printf(" Y is defined similarly (but having n1/2+1 rows\n"); printf("only due to conjugate symmetry).\n"); printf("\n Original data values\n"); for (k = 0; k < n3; k++) { sprintf(title, "\n X(i,j,k) for k = %" NAG_IFMT, k); nag_gen_real_mat_print_comp(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n1, n2, &x[k*n1*n2], n1, "%6.3f", title, Nag_NoLabels, 0, Nag_NoLabels, 0, 80, 0, 0, &fail); } if (fail.code != NE_NOERROR) { printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Compute three-dimensional real-to-complex discrete Fourier transform using * nag_sum_fft_real_3d (c06pyc) and print out. */ nag_sum_fft_real_3d(n1, n2, n3, x, y, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_sum_fft_real_3d (c06pyc).\n%s\n", fail.message); exit_status = 2; goto END; } printf("\n Components of discrete Fourier transform\n"); for (k = 0; k < n3; k++) { sprintf(title, "\n Y(i,j,k) for k = %" NAG_IFMT, k); /* nag_gen_complx_mat_print_comp (x04dbc). * Print complex general matrix (comprehensive) */ nag_gen_complx_mat_print_comp(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n1/2+1, n2, &y[k*(n1/2+1)*n2], n1/2+1, Nag_BracketForm, "%6.3f", title, Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail); } if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n", fail.message); exit_status = 3; goto END; } /* Compute three-dimensional complex-to-real discrete Fourier transform using * nag_sum_fft_hermitian_3d (c06pzc) and print out. */ nag_sum_fft_hermitian_3d(n1, n2, n3, y, x, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_sum_fft_hermitian_3d (c06pzc).\n%s\n", fail.message); exit_status = 4; goto END; } printf("\n Original sequence as restored by inverse transform\n"); for (k = 0; k < n3; k++) { sprintf(title, "\n X(i,j,k) for k = %" NAG_IFMT, k); /* nag_gen_real_mat_print_comp (x04cbc). * Print out a real matrix (comprehensive) */ nag_gen_real_mat_print_comp(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, n1, n2, &x[k*n1*n2], n1, "%6.3f", title, Nag_NoLabels, 0, Nag_NoLabels, 0, 80, 0, 0, &fail); } if (fail.code != NE_NOERROR) { printf("Error from nag_gen_real_mat_print_comp (x04cbc).\n%s\n", fail.message); exit_status = 5; goto END; } END: NAG_FREE(x); NAG_FREE(y); return exit_status; }