s Chapter Contents
s Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_tanh (s10aac)

## 1  Purpose

nag_tanh (s10aac) returns a value for the hyperbolic tangent, $\mathrm{tanh}x$.

## 2  Specification

 #include #include
 double nag_tanh (double x)

## 3  Description

nag_tanh (s10aac) calculates an approximate value for the hyperbolic tangent of its argument, $\mathrm{tanh}x$.
For $\left|x\right|\le 1$ the function is based on a Chebyshev expansion.
For $1<\left|x\right|<{E}_{1}$ (where ${E}_{1}$ is a machine-dependent constant),
 $tanh⁡x = e 2x - 1 e 2x + 1 .$
For $\left|x\right|\ge {E}_{1}$, $\mathrm{tanh}x=\mathrm{sign}x$ to within the representation accuracy of the machine and so this approximation is used.

## 4  References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

## 5  Arguments

1:     xdoubleInput
On entry: the argument $x$ of the function.

None.

## 7  Accuracy

If $\delta$ and $\epsilon$ are the relative errors in the argument and the result respectively, then in principle,
 $ε ≃ 2x sinh⁡2 x δ .$
That is, a relative error in the argument, $x$, is amplified by a factor approximately $2x/\mathrm{sinh}2x$ in the result.
The equality should hold if $\delta$ is greater than the machine precision($\delta$ due to data errors etc.), but if $\delta$ is due simply to the round-off in the machine representation, it is possible that an extra figure may be lost in internal calculation round-off.
It should be noted that this factor is always less than or equal to 1.0 and away from $x=0$ the accuracy will eventually be limited entirely by the machine precision.

None.

## 9  Example

The following program reads values of the argument $x$ from a file, evaluates the function at each value of $x$ and prints the results.

### 9.1  Program Text

Program Text (s10aace.c)

### 9.2  Program Data

Program Data (s10aace.d)

### 9.3  Program Results

Program Results (s10aace.r)