f08 Chapter Contents
f08 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zhpevx (f08gpc)

## 1  Purpose

nag_zhpevx (f08gpc) computes selected eigenvalues and, optionally, eigenvectors of a complex $n$ by $n$ Hermitian matrix $A$ in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## 2  Specification

 #include #include
 void nag_zhpevx (Nag_OrderType order, Nag_JobType job, Nag_RangeType range, Nag_UploType uplo, Integer n, Complex ap[], double vl, double vu, Integer il, Integer iu, double abstol, Integer *m, double w[], Complex z[], Integer pdz, Integer jfail[], NagError *fail)

## 3  Description

The Hermitian matrix $A$ is first reduced to real tridiagonal form, using unitary similarity transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are required.

## 4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     jobNag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
3:     rangeNag_RangeTypeInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_AllValues}$, all eigenvalues will be found.
If ${\mathbf{range}}=\mathrm{Nag_Interval}$, all eigenvalues in the half-open interval $\left({\mathbf{vl}},{\mathbf{vu}}\right]$ will be found.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, the ilth to iuth eigenvalues will be found.
Constraint: ${\mathbf{range}}=\mathrm{Nag_AllValues}$, $\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$.
4:     uploNag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ is stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
5:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6:     ap[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the upper or lower triangle of the $n$ by $n$ Hermitian matrix $A$, packed by rows or columns.
The storage of elements ${A}_{ij}$ depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(j-1\right)×j/2+i-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-j\right)×\left(j-1\right)/2+i-1\right]$, for $i\ge j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(2n-i\right)×\left(i-1\right)/2+j-1\right]$, for $i\le j$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ap}}\left[\left(i-1\right)×i/2+j-1\right]$, for $i\ge j$.
On exit: ap is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of $A$.
7:     vldoubleInput
8:     vudoubleInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, the lower and upper bounds of the interval to be searched for eigenvalues.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$, vl and vu are not referenced.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
9:     ilIntegerInput
10:   iuIntegerInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Indices}$, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Interval}$, il and iu are not referenced.
Constraints:
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
11:   abstoldoubleInput
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $\left[a,b\right]$ of width less than or equal to
 $abstol+ε maxa,b ,$
where $\epsilon$ is the machine precision. If abstol is less than or equal to zero, then $\epsilon {‖T‖}_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2×{\mathbf{nag_real_safe_small_number}}$, not zero. If this function returns with NE_CONVERGENCE, indicating that some eigenvectors did not converge, try setting abstol to $2×{\mathbf{nag_real_safe_small_number}}$. See Demmel and Kahan (1990).
12:   mInteger *Output
On exit: the total number of eigenvalues found. $0\le {\mathbf{m}}\le {\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$, ${\mathbf{m}}={\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, ${\mathbf{m}}={\mathbf{iu}}-{\mathbf{il}}+1$.
13:   w[n]doubleOutput
On exit: the selected eigenvalues in ascending order.
14:   z[$\mathit{dim}$]ComplexOutput
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if NE_NOERROR, the first m columns of $Z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{w}}\left[i-1\right]$;
• if an eigenvector fails to converge (NE_CONVERGENCE), then that column of $Z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in jfail.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
15:   pdzIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
16:   jfail[$\mathit{dim}$]IntegerOutput
Note: the dimension, dim, of the array jfail must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if NE_NOERROR, the first m elements of jfail are zero;
• if NE_CONVERGENCE, jfail contains the indices of the eigenvectors that failed to converge.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, jfail is not referenced.
17:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_CONVERGENCE
The algorithm failed to converge; $〈\mathit{\text{value}}〉$ eigenvectors did not converge.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_ENUM_INT_3
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{il}}=〈\mathit{\text{value}}〉$, ${\mathbf{iu}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
NE_ENUM_REAL_2
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{vl}}=〈\mathit{\text{value}}〉$ and ${\mathbf{vu}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

The total number of floating point operations is proportional to ${n}^{3}$.
The real analogue of this function is nag_dspevx (f08gbc).

## 9  Example

This example finds the eigenvalues in the half-open interval $\left(-2,2\right]$, and the corresponding eigenvectors, of the Hermitian matrix
 $A = 1 2-i 3-i 4-i 2+i 2 3-2i 4-2i 3+i 3+2i 3 4-3i 4+i 4+2i 4+3i 4 .$

### 9.1  Program Text

Program Text (f08gpce.c)

### 9.2  Program Data

Program Data (f08gpce.d)

### 9.3  Program Results

Program Results (f08gpce.r)