f08 Chapter Contents
f08 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zgelqf (f08avc)

## 1  Purpose

nag_zgelqf (f08avc) computes the $LQ$ factorization of a complex $m$ by $n$ matrix.

## 2  Specification

 #include #include
 void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex a[], Integer pda, Complex tau[], NagError *fail)

## 3  Description

nag_zgelqf (f08avc) forms the $LQ$ factorization of an arbitrary rectangular complex $m$ by $n$ matrix. No pivoting is performed.
If $m\le n$, the factorization is given by:
 $A = L 0 Q$
where $L$ is an $m$ by $m$ lower triangular matrix (with real diagonal elements) and $Q$ is an $n$ by $n$ unitary matrix. It is sometimes more convenient to write the factorization as
 $A = L 0 Q1 Q2$
which reduces to
 $A = LQ1 ,$
where ${Q}_{1}$ consists of the first $m$ rows of $Q$, and ${Q}_{2}$ the remaining $n-m$ rows.
If $m>n$, $L$ is trapezoidal, and the factorization can be written
 $A = L1 L2 Q$
where ${L}_{1}$ is lower triangular and ${L}_{2}$ is rectangular.
The $LQ$ factorization of $A$ is essentially the same as the $QR$ factorization of ${A}^{\mathrm{H}}$, since
 $A = L 0 Q⇔AH= QH LH 0 .$
The matrix $Q$ is not formed explicitly but is represented as a product of $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with $Q$ in this representation (see Section 8).
Note also that for any $k, the information returned in the first $k$ rows of the array a represents an $LQ$ factorization of the first $k$ rows of the original matrix $A$.

None.

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     mIntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
3:     nIntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     a[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m\le n$, the elements above the diagonal are overwritten by details of the unitary matrix $Q$ and the lower triangle is overwritten by the corresponding elements of the $m$ by $m$ lower triangular matrix $L$.
If $m>n$, the strictly upper triangular part is overwritten by details of the unitary matrix $Q$ and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ lower trapezoidal matrix $L$.
The diagonal elements of $L$ are real.
5:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:     tau[$\mathit{dim}$]ComplexOutput
Note: the dimension, dim, of the array tau must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)\right)$.
On exit: further details of the unitary matrix $Q$.
7:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

## 7  Accuracy

The computed factorization is the exact factorization of a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision.

The total number of real floating point operations is approximately $\frac{8}{3}{m}^{2}\left(3n-m\right)$ if $m\le n$ or $\frac{8}{3}{n}^{2}\left(3m-n\right)$ if $m>n$.
To form the unitary matrix $Q$ nag_zgelqf (f08avc) may be followed by a call to nag_zunglq (f08awc):
```nag_zunglq(order,n,n,MIN(m,n),&a,pda,tau,&fail)
```
but note that the first dimension of the array a, specified by the argument pda, must be at least n, which may be larger than was required by nag_zgelqf (f08avc).
When $m\le n$, it is often only the first $m$ rows of $Q$ that are required, and they may be formed by the call:
```nag_zunglq(order,m,n,m,&a,pda,tau,&fail)
```
To apply $Q$ to an arbitrary complex rectangular matrix $C$, nag_zgelqf (f08avc) may be followed by a call to nag_zunmlq (f08axc). For example,
```nag_zunmlq(order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),&a,pda,
tau,&c,pdc,&fail)
```
forms the matrix product $C={Q}^{\mathrm{H}}C$, where $C$ is $m$ by $p$.
The real analogue of this function is nag_dgelqf (f08ahc).

## 9  Example

This example finds the minimum norm solutions of the under-determined systems of linear equations
 $Ax1= b1 and Ax2= b2$
where ${b}_{1}$ and ${b}_{2}$ are the columns of the matrix $B$,
 $A = 0.28-0.36i 0.50-0.86i -0.77-0.48i 1.58+0.66i -0.50-1.10i -1.21+0.76i -0.32-0.24i -0.27-1.15i 0.36-0.51i -0.07+1.33i -0.75+0.47i -0.08+1.01i$
and
 $B = -1.35+0.19i 4.83-2.67i 9.41-3.56i -7.28+3.34i -7.57+6.93i 0.62+4.53i .$

### 9.1  Program Text

Program Text (f08avce.c)

### 9.2  Program Data

Program Data (f08avce.d)

### 9.3  Program Results

Program Results (f08avce.r)