f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zhpcon (f07puc)

## 1  Purpose

nag_zhpcon (f07puc) estimates the condition number of a complex Hermitian indefinite matrix $A$, where $A$ has been factorized by nag_zhptrf (f07prc), using packed storage.

## 2  Specification

 #include #include
 void nag_zhpcon (Nag_OrderType order, Nag_UploType uplo, Integer n, const Complex ap[], const Integer ipiv[], double anorm, double *rcond, NagError *fail)

## 3  Description

nag_zhpcon (f07puc) estimates the condition number (in the $1$-norm) of a complex Hermitian indefinite matrix $A$:
 $κ1A=A1A-11 .$
Since $A$ is Hermitian, ${\kappa }_{1}\left(A\right)={\kappa }_{\infty }\left(A\right)={‖A‖}_{\infty }{‖{A}^{-1}‖}_{\infty }$.
Because ${\kappa }_{1}\left(A\right)$ is infinite if $A$ is singular, the function actually returns an estimate of the reciprocal of ${\kappa }_{1}\left(A\right)$.
The function should be preceded by a call to nag_zhp_norm (f16udc) to compute ${‖A‖}_{1}$ and a call to nag_zhptrf (f07prc) to compute the Bunch–Kaufman factorization of $A$. The function then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate ${‖{A}^{-1}‖}_{1}$.

## 4  References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies how $A$ has been factorized.
${\mathbf{uplo}}=\mathrm{Nag_Upper}$
$A=PUD{U}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $U$ is upper triangular.
${\mathbf{uplo}}=\mathrm{Nag_Lower}$
$A=PLD{L}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     ap[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array ap must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×\left({\mathbf{n}}+1\right)/2\right)$.
On entry: the factorization of $A$ stored in packed form, as returned by nag_zhptrf (f07prc).
5:     ipiv[$\mathit{dim}$]const IntegerInput
Note: the dimension, dim, of the array ipiv must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry: details of the interchanges and the block structure of $D$, as returned by nag_zhptrf (f07prc).
6:     anormdoubleInput
On entry: the $1$-norm of the original matrix $A$, which may be computed by calling nag_zhp_norm (f16udc) with its argument ${\mathbf{norm}}=\mathrm{Nag_OneNorm}$. anorm must be computed either before calling nag_zhptrf (f07prc) or else from a copy of the original matrix $A$.
Constraint: ${\mathbf{anorm}}\ge 0.0$.
7:     rconddouble *Output
On exit: an estimate of the reciprocal of the condition number of $A$. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, $A$ is singular to working precision.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_REAL
On entry, ${\mathbf{anorm}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{anorm}}\ge 0.0$.

## 7  Accuracy

The computed estimate rcond is never less than the true value $\rho$, and in practice is nearly always less than $10\rho$, although examples can be constructed where rcond is much larger.

A call to nag_zhpcon (f07puc) involves solving a number of systems of linear equations of the form $Ax=b$; the number is usually $5$ and never more than $11$. Each solution involves approximately $8{n}^{2}$ real floating point operations but takes considerably longer than a call to nag_zhptrs (f07psc) with one right-hand side, because extra care is taken to avoid overflow when $A$ is approximately singular.
The real analogue of this function is nag_dspcon (f07pgc).

## 9  Example

This example estimates the condition number in the $1$-norm (or $\infty$-norm) of the matrix $A$, where
 $A= -1.36+0.00i 1.58+0.90i 2.21-0.21i 3.91+1.50i 1.58-0.90i -8.87+0.00i -1.84-0.03i -1.78+1.18i 2.21+0.21i -1.84+0.03i -4.63+0.00i 0.11+0.11i 3.91-1.50i -1.78-1.18i 0.11-0.11i -1.84+0.00i .$
Here $A$ is Hermitian indefinite, stored in packed form, and must first be factorized by nag_zhptrf (f07prc). The true condition number in the $1$-norm is $9.10$.

### 9.1  Program Text

Program Text (f07puce.c)

### 9.2  Program Data

Program Data (f07puce.d)

### 9.3  Program Results

Program Results (f07puce.r)