nag_zpbtrs (f07hsc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

NAG Library Function Document

nag_zpbtrs (f07hsc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_zpbtrs (f07hsc) solves a complex Hermitian positive definite band system of linear equations with multiple right-hand sides,
AX=B ,
where A has been factorized by nag_zpbtrf (f07hrc).

2  Specification

#include <nag.h>
#include <nagf07.h>
void  nag_zpbtrs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd, Integer nrhs, const Complex ab[], Integer pdab, Complex b[], Integer pdb, NagError *fail)

3  Description

nag_zpbtrs (f07hsc) is used to solve a complex Hermitian positive definite band system of linear equations AX=B, the function must be preceded by a call to nag_zpbtrf (f07hrc) which computes the Cholesky factorization of A. The solution X is computed by forward and backward substitution.
If uplo=Nag_Upper, A=UHU, where U is upper triangular; the solution X is computed by solving UHY=B and then UX=Y.
If uplo=Nag_Lower, A=LLH, where L is lower triangular; the solution X is computed by solving LY=B and then LHX=Y.

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: specifies how A has been factorized.
A=UHU, where U is upper triangular.
A=LLH, where L is lower triangular.
Constraint: uplo=Nag_Upper or Nag_Lower.
3:     nIntegerInput
On entry: n, the order of the matrix A.
Constraint: n0.
4:     kdIntegerInput
On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: kd0.
5:     nrhsIntegerInput
On entry: r, the number of right-hand sides.
Constraint: nrhs0.
6:     ab[dim]const ComplexInput
Note: the dimension, dim, of the array ab must be at least max1,pdab×n.
On entry: the Cholesky factor of A, as returned by nag_zpbtrf (f07hrc).
7:     pdabIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix in the array ab.
Constraint: pdabkd+1.
8:     b[dim]ComplexInput/Output
Note: the dimension, dim, of the array b must be at least
  • max1,pdb×nrhs when order=Nag_ColMajor;
  • max1,n×pdb when order=Nag_RowMajor.
The i,jth element of the matrix B is stored in
  • b[j-1×pdb+i-1] when order=Nag_ColMajor;
  • b[i-1×pdb+j-1] when order=Nag_RowMajor.
On entry: the n by r right-hand side matrix B.
On exit: the n by r solution matrix X.
9:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
  • if order=Nag_ColMajor, pdbmax1,n;
  • if order=Nag_RowMajor, pdbmax1,nrhs.
10:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

Dynamic memory allocation failed.
On entry, argument value had an illegal value.
On entry, kd=value.
Constraint: kd0.
On entry, n=value.
Constraint: n0.
On entry, nrhs=value.
Constraint: nrhs0.
On entry, pdab=value.
Constraint: pdab>0.
On entry, pdb=value.
Constraint: pdb>0.
On entry, pdab=value and kd=value.
Constraint: pdabkd+1.
On entry, pdb=value and n=value.
Constraint: pdbmax1,n.
On entry, pdb=value and nrhs=value.
Constraint: pdbmax1,nrhs.
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

7  Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where ck+1 is a modest linear function of k+1, and ε is the machine precision.
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x ck+1condA,xε
where condA,x=A-1Ax/xcondA=A-1AκA. Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_zpbrfs (f07hvc), and an estimate for κA (=κ1A) can be obtained by calling nag_zpbcon (f07huc).

8  Further Comments

The total number of real floating point operations is approximately 16nkr, assuming nk.
This function may be followed by a call to nag_zpbrfs (f07hvc) to refine the solution and return an error estimate.
The real analogue of this function is nag_dpbtrs (f07hec).

9  Example

This example solves the system of equations AX=B, where
A= 9.39+0.00i 1.08-1.73i 0.00+0.00i 0.00+0.00i 1.08+1.73i 1.69+0.00i -0.04+0.29i 0.00+0.00i 0.00+0.00i -0.04-0.29i 2.65+0.00i -0.33+2.24i 0.00+0.00i 0.00+0.00i -0.33-2.24i 2.17+0.00i
B= -12.42+68.42i 54.30-56.56i -9.93+00.88i 18.32+04.76i -27.30-00.01i -4.40+09.97i 5.31+23.63i 9.43+01.41i .
Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by nag_zpbtrf (f07hrc).

9.1  Program Text

Program Text (f07hsce.c)

9.2  Program Data

Program Data (f07hsce.d)

9.3  Program Results

Program Results (f07hsce.r)

nag_zpbtrs (f07hsc) (PDF version)
f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012