f07 Chapter Contents
f07 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_zpoequ (f07ftc)

## 1  Purpose

nag_zpoequ (f07ftc) computes a diagonal scaling matrix $S$ intended to equilibrate a complex $n$ by $n$ Hermitian positive definite matrix $A$ and reduce its condition number.

## 2  Specification

 #include #include
 void nag_zpoequ (Nag_OrderType order, Integer n, const Complex a[], Integer pda, double s[], double *scond, double *amax, NagError *fail)

## 3  Description

nag_zpoequ (f07ftc) computes a diagonal scaling matrix $S$ chosen so that
 $sj=1 / ajj .$
This means that the matrix $B$ given by
 $B=SAS ,$
has diagonal elements equal to unity. This in turn means that the condition number of $B$, ${\kappa }_{2}\left(B\right)$, is within a factor $n$ of the matrix of smallest possible condition number over all possible choices of diagonal scalings (see Corollary 7.6 of Higham (2002)).

## 4  References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     nIntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
3:     a[$\mathit{dim}$]const ComplexInput
Note: the dimension, dim, of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the matrix $A$ whose scaling factors are to be computed. Only the diagonal elements of the array a are referenced.
4:     pdaIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
5:     s[n]doubleOutput
On exit: if NE_NOERROR, s contains the diagonal elements of the scaling matrix $S$.
6:     sconddouble *Output
On exit: if NE_NOERROR, scond contains the ratio of the smallest value of s to the largest value of s. If ${\mathbf{scond}}\ge 0.1$ and amax is neither too large nor too small, it is not worth scaling by $S$.
7:     amaxdouble *Output
On exit: $\mathrm{max}\left|{a}_{ij}\right|$. If amax is very close to overflow or underflow, the matrix $A$ should be scaled.
8:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_MAT_NOT_POS_DEF
The $〈\mathit{\text{value}}〉$th diagonal element of $A$ is not positive (and hence $A$ cannot be positive definite).

## 7  Accuracy

The computed scale factors will be close to the exact scale factors.

## 8  Further Comments

The real analogue of this function is nag_dpoequ (f07ffc).

## 9  Example

This example equilibrates the Hermitian positive definite matrix $A$ given by
 $A = (3.23 -(1.51-1.92i 1.90+0.84i×1050 -0.42+2.50i (1.51+1.92i -(3.58 -0.23+1.11i×1050 -1.18+1.37i 1.90-0.84i×105 -0.23-1.11i×105 -4.09×1010 (2.33-0.14i×105 (0.42-2.50i (-1.18-1.37i 2.33+0.14i×1050 -4.29 .$
Details of the scaling factors and the scaled matrix are output.

### 9.1  Program Text

Program Text (f07ftce.c)

### 9.2  Program Data

Program Data (f07ftce.d)

### 9.3  Program Results

Program Results (f07ftce.r)