f04 Chapter Contents
f04 Chapter Introduction
NAG C Library Manual

# NAG Library Function Documentnag_herm_posdef_band_lin_solve (f04cfc)

## 1  Purpose

nag_herm_posdef_band_lin_solve (f04cfc) computes the solution to a complex system of linear equations $AX=B$, where $A$ is an $n$ by $n$ Hermitian positive definite band matrix of band width $2k+1$, and $X$ and $B$ are $n$ by $r$ matrices. An estimate of the condition number of $A$ and an error bound for the computed solution are also returned.

## 2  Specification

 #include #include
 void nag_herm_posdef_band_lin_solve (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer kd, Integer nrhs, Complex ab[], Integer pdab, Complex b[], Integer pdb, double *rcond, double *errbnd, NagError *fail)

## 3  Description

The Cholesky factorization is used to factor $A$ as $A={U}^{\mathrm{H}}U$, if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, or $A=L{L}^{\mathrm{H}}$, if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, where $U$ is an upper triangular band matrix with $k$ superdiagonals, and $L$ is a lower triangular band matrix with $k$ subdiagonals. The factored form of $A$ is then used to solve the system of equations $AX=B$.

## 4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

## 5  Arguments

1:     orderNag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or Nag_ColMajor.
2:     uploNag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangle of the matrix $A$ is stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangle of the matrix $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
3:     nIntegerInput
On entry: the number of linear equations $n$, i.e., the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:     kdIntegerInput
On entry: the number of superdiagonals $k$ (and the number of subdiagonals) of the band matrix $A$.
Constraint: ${\mathbf{kd}}\ge 0$.
5:     nrhsIntegerInput
On entry: the number of right-hand sides $r$, i.e., the number of columns of the matrix $B$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
6:     ab[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$.
On entry:
• if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ then
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${a}_{ij}$ is stored in ${\mathbf{AB}}\left(\left(j-1\right)×{\mathbf{pdab}}+{\mathbf{kd}}+i-j\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${a}_{ij}$ is stored in ${\mathbf{AB}}\left(\left(i-1\right)×{\mathbf{pdab}}+j-i\right)$.
for $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-{\mathbf{kd}}\right)\le i\le j$;
• if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$ then
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${a}_{ij}$ is stored in ${\mathbf{AB}}\left(\left(j-1\right)×{\mathbf{pdab}}+i-j\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${a}_{ij}$ is stored in ${\mathbf{AB}}\left(\left(i-1\right)×{\mathbf{pdab}}+{\mathbf{kd}}+j-i\right)$.
for $j\le i\le \mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+{\mathbf{kd}}\right)$,
where ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$ is the stride separating diagonal matrix elements in the array ab.
See Section 8 below for further details.
On exit: if NE_NOERROR or NE_RCOND, the factor $U$ or $L$ from the Cholesky factorization $A={U}^{\mathrm{H}}U$ or $A=L{L}^{\mathrm{H}}$, in the same storage format as $A$.
7:     pdabIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
8:     b[$\mathit{dim}$]ComplexInput/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{nrhs}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $n$ by $r$ matrix of right-hand sides $B$.
On exit: if NE_NOERROR or NE_RCOND, the $n$ by $r$ solution matrix $X$.
9:     pdbIntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{nrhs}}\right)$.
10:   rconddouble *Output
On exit: if NE_NOERROR or NE_RCOND, an estimate of the reciprocal of the condition number of the matrix $A$, computed as ${\mathbf{rcond}}=1/\left({‖A‖}_{1}{‖{A}^{-1}‖}_{1}\right)$.
11:   errbnddouble *Output
On exit: if NE_NOERROR or NE_RCOND, an estimate of the forward error bound for a computed solution $\stackrel{^}{x}$, such that ${‖\stackrel{^}{x}-x‖}_{1}/{‖x‖}_{1}\le {\mathbf{errbnd}}$, where $\stackrel{^}{x}$ is a column of the computed solution returned in the array b and $x$ is the corresponding column of the exact solution $X$. If rcond is less than machine precision, then errbnd is returned as unity.
12:   failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{kd}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{nrhs}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{nrhs}}\ge 0$.
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}>0$.
On entry, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdb}}>0$.
NE_INT_2
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$ and ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
On entry, ${\mathbf{pdb}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_POS_DEF
The principal minor of order $〈\mathit{\text{value}}〉$ of the matrix $A$ is not positive definite. The factorization has not been completed and the solution could not be computed.
NE_RCOND
A solution has been computed, but rcond is less than machine precision so that the matrix $A$ is numerically singular.

## 7  Accuracy

The computed solution for a single right-hand side, $\stackrel{^}{x}$, satisfies an equation of the form
 $A+E x^=b,$
where
 $E1=Oε A1$
and $\epsilon$ is the machine precision. An approximate error bound for the computed solution is given by
 $x^-x1 x1 ≤ κA E1 A1 ,$
where $\kappa \left(A\right)={‖{A}^{-1}‖}_{1}{‖A‖}_{1}$, the condition number of $A$ with respect to the solution of the linear equations. nag_herm_posdef_band_lin_solve (f04cfc) uses the approximation ${‖E‖}_{1}=\epsilon {‖A‖}_{1}$ to estimate errbnd. See Section 4.4 of Anderson et al. (1999) for further details.

## 8  Further Comments

The band storage schemes for the array ab are identical to the storage schemes for symmetric and Hermitian band matrices in Chapter f07. See Section 3.3.3 in the f07 Chapter Introduction for details of the storage schemes and an illustrated example.
If ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ then the elements of the stored upper triangular part of $A$ are overwritten by the corresponding elements of the upper triangular matrix $U$. Similarly, if ${\mathbf{uplo}}=\mathrm{Nag_Lower}$ then the elements of the stored lower triangular part of $A$ are overwritten by the corresponding elements of the lower triangular matrix $L$.
Assuming that $n\gg k$, the total number of floating point operations required to solve the equations $AX=B$ is approximately ${n\left(k+1\right)}^{2}$ for the factorization and $4nkr$ for the solution following the factorization. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.
In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
The real analogue of nag_herm_posdef_band_lin_solve (f04cfc) is nag_real_sym_posdef_band_lin_solve (f04bfc).

## 9  Example

This example solves the equations
 $AX=B,$
where $A$ is the Hermitian positive definite band matrix
 $A= 9.39i+0.00 1.08-1.73i 0.00i+0.00 0.00i+0.00 1.08+1.73i 1.69i+0.00 -0.04+0.29i 0.00i+0.00 0.00i+0.00 -0.04-0.29i 2.65i+0.00 -0.33+2.24i 0.00i+0.00 0.00i+0.00 -0.33-2.24i 2.17i+0.00$
and
 $B= -12.42+68.42i 54.30-56.56i -9.93+00.88i 18.32+04.76i -27.30-00.01i -4.40+09.97i 5.31+23.63i 9.43+01.41i .$
An estimate of the condition number of $A$ and an approximate error bound for the computed solutions are also printed.

### 9.1  Program Text

Program Text (f04cfce.c)

### 9.2  Program Data

Program Data (f04cfce.d)

### 9.3  Program Results

Program Results (f04cfce.r)