/* nag_zhemm (f16zcc) Example Program. * * Copyright 2005 Numerical Algorithms Group. * * Mark 8, 2005. */ #include #include #include #include #include int main(void) { /* Scalars */ Complex alpha, beta; Integer exit_status, i, j, m, n, pda, pdb, pdc; /* Arrays */ Complex *a = 0, *b = 0, *c = 0; char nag_enum_arg[40]; /* Nag Types */ NagError fail; Nag_OrderType order; Nag_SideType side; Nag_UploType uplo; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J-1)*pda + I - 1] #define B(I, J) b[(J-1)*pdb + I - 1] #define C(I, J) c[(J-1)*pdc + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I-1)*pda + J - 1] #define B(I, J) b[(I-1)*pdb + J - 1] #define C(I, J) c[(I-1)*pdc + J - 1] order = Nag_RowMajor; #endif exit_status = 0; INIT_FAIL(fail); printf("nag_zhemm (f16zcc) Example Program Results\n\n"); /* Skip heading in data file */ scanf("%*[^\n] "); /* Read the problem dimensions */ scanf("%ld%ld%*[^\n] ", &m, &n); /* Read the side parameter */ scanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ side = (Nag_SideType) nag_enum_name_to_value(nag_enum_arg); /* Read uplo */ scanf("%s%*[^\n] ", nag_enum_arg); /* nag_enum_name_to_value(x04nac). * Converts NAG enum member name to value */ uplo = (Nag_UploType) nag_enum_name_to_value(nag_enum_arg); /* Read scalar parameters */ scanf(" ( %lf , %lf ) ( %lf , %lf )%*[^\n] ", &alpha.re, &alpha.im, &beta.re, &beta.im); if (side == Nag_LeftSide) pda = m; else pda = n; #ifdef NAG_COLUMN_MAJOR pdb = m; pdc = m; #else pdb = n; pdc = n; #endif if (m > 0 && n > 0) { /* Allocate memory */ if (side == Nag_LeftSide) { if (!(a = NAG_ALLOC(m*m, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } } else { if (!(a = NAG_ALLOC(n*n, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } } if (!(b = NAG_ALLOC(m*n, Complex)) || !(c = NAG_ALLOC(m*n, Complex))) { printf("Allocation failure\n"); exit_status = -1; goto END; } } else { printf("Invalid m or n\n"); exit_status = 1; return exit_status; } /* Input matrix A */ if (uplo == Nag_Upper) { for (i = 1; i <= pda; ++i) { for (j = i; j <= pda; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); scanf("%*[^\n] "); } } else { for (i = 1; i <= pda; ++i) { for (j = 1; j <= i; ++j) scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im); scanf("%*[^\n] "); } } /* Input matrix B */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im); scanf("%*[^\n] "); } /* Input matrix C */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im); scanf("%*[^\n] "); } /* nag_zhemm(f16zcc). * Hermitian matrix-matrix multiply. * */ nag_zhemm(order, side, uplo, m, n, alpha, a, pda, b, pdb, beta, c, pdc, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_zhemm.\n%s\n", fail.message); exit_status = 1; goto END; } /* Print result */ /* nag_gen_complx_mat_print (x04dac). * Print Complex general matrix (easy-to-use) */ fflush(stdout); nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n, c, pdc, "Matrix Matrix Product", 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (c) NAG_FREE(c); return exit_status; }