/* nag_dgelqf (f08ahc) Example Program. * * Copyright 2001 Numerical Algorithms Group. * * Mark 7, 2001. */ #include #include #include #include #include #include int main(int argc, char *argv[]) { FILE *fpin, *fpout; char *outfile = 0; /* Scalars */ Integer i, j, m, n, nrhs, pda, pdb, tau_len; Integer exit_status = 0; NagError fail; Nag_OrderType order; /* Arrays */ double *a = 0, *b = 0, *tau = 0; #ifdef NAG_COLUMN_MAJOR #define A(I, J) a[(J - 1) * pda + I - 1] #define B(I, J) b[(J - 1) * pdb + I - 1] order = Nag_ColMajor; #else #define A(I, J) a[(I - 1) * pda + J - 1] #define B(I, J) b[(I - 1) * pdb + J - 1] order = Nag_RowMajor; #endif INIT_FAIL(fail); /* Check for command-line IO options */ fpin = nag_example_file_io(argc, argv, "-data", NULL); fpout = nag_example_file_io(argc, argv, "-results", NULL); (void) nag_example_file_io(argc, argv, "-nag_write", &outfile); fprintf(fpout, "nag_dgelqf (f08ahc) Example Program Results\n\n"); /* Skip heading in data file */ fscanf(fpin, "%*[^\n] "); fscanf(fpin, "%ld%ld%ld%*[^\n] ", &m, &n, &nrhs); #ifdef NAG_COLUMN_MAJOR pda = m; pdb = n; #else pda = n; pdb = nrhs; #endif tau_len = MIN(m, n); /* Allocate memory */ if (!(a = NAG_ALLOC(m * n, double)) || !(b = NAG_ALLOC(n * nrhs, double)) || !(tau = NAG_ALLOC(tau_len, double))) { fprintf(fpout, "Allocation failure\n"); exit_status = -1; goto END; } /* Read A and B from data file */ for (i = 1; i <= m; ++i) { for (j = 1; j <= n; ++j) fscanf(fpin, "%lf", &A(i, j)); } fscanf(fpin, "%*[^\n] "); for (i = 1; i <= m; ++i) { for (j = 1; j <= nrhs; ++j) fscanf(fpin, "%lf", &B(i, j)); } fscanf(fpin, "%*[^\n] "); /* Compute the LQ factorization of A */ /* nag_dgelqf (f08ahc). * LQ factorization of real general rectangular matrix */ nag_dgelqf(order, m, n, a, pda, tau, &fail); if (fail.code != NE_NOERROR) { fprintf(fpout, "Error from nag_dgelqf (f08ahc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Solve L*Y = B, storing the result in B */ /* nag_dtrtrs (f07tec). * Solution of real triangular system of linear equations, * multiple right-hand sides */ nag_dtrtrs(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m, nrhs, a, pda, b, pdb, &fail); if (fail.code != NE_NOERROR) { fprintf(fpout, "Error from nag_dtrtrs (f07tec).\n%s\n", fail.message); exit_status = 1; goto END; } /* Set rows (M+1) to N of B to zero */ if (m < n) { for (i = m + 1; i <= n; ++i) { for (j = 1; j <= nrhs; ++j) B(i, j) = 0.0; } } /* Compute minimum-norm solution X = (Q**T)*B in B */ /* nag_dormlq (f08akc). * Apply orthogonal transformation determined by nag_dgelqf (f08ahc) */ nag_dormlq(order, Nag_LeftSide, Nag_Trans, n, nrhs, m, a, pda, tau, b, pdb, &fail); if (fail.code != NE_NOERROR) { fprintf(fpout, "Error from nag_dormlq (f08akc).\n%s\n", fail.message); exit_status = 1; goto END; } /* Print minimum-norm solution(s) */ /* nag_gen_real_mat_print (x04cac). * Print real general matrix (easy-to-use) */ if (outfile) fclose(fpout); nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb, "Minimum-norm solution(s)", outfile, &fail); if (outfile && !(fpout = fopen(outfile, "a"))) { exit_status = 2; goto END; } if (fail.code != NE_NOERROR) { fprintf(fpout, "Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; } END: if (fpin != stdin) fclose(fpin); if (fpout != stdout) fclose(fpout); if (a) NAG_FREE(a); if (b) NAG_FREE(b); if (tau) NAG_FREE(tau); return exit_status; }