NAG C Library Function Document

nag_bessel_k_alpha (s18ecg)

1 Purpose

nag_bessel_k_alpha (s18ecg) returns a sequence of values for the modified Bessel functions \(K_{\alpha+n}(x) \) for real \(x > 0 \), selected values of \(\alpha \geq 0 \) and \(n = 0, 1, \ldots, N \).

2 Specification

```c
void nag_bessel_k_alpha (double x, Integer ia, Integer ja, Integer nl,
   double b[], NagError *fail)
```

3 Description

This routine evaluates a sequence of values for the modified Bessel function of the second kind \(K_\alpha(x) \), where \(x \) is real and non-negative and \(\alpha \in \{0, \frac{1}{5}, \frac{1}{3}, \frac{1}{2}, \frac{3}{2}, 2, \ldots\} \) is the order. The \((N+1)\)-member sequence is generated for orders \(\alpha, \alpha + 1, \ldots, \alpha + N \).

4 Parameters

1: \(x \) – double

 \(\text{Input} \)

 On entry: the argument \(x \) of the function.

 Constraint: \(x > 0.0 \).

2: \(ia \) – Integer

 \(\text{Input} \)

 On entry: the numerator \(i \) and denominator \(j \), respectively, of the order \(\alpha = i/j \) of the first member in the required sequence of function values. Only the following combinations of pairs of values of \(i \) and \(j \) are allowed:

 \(i = 0 \) and \(j = 1 \) corresponds to \(\alpha = 0 \);
 \(i = 1 \) and \(j = 2 \) corresponds to \(\alpha = \frac{1}{2} \);
 \(i = 1 \) and \(j = 3 \) corresponds to \(\alpha = \frac{1}{3} \);
 \(i = 1 \) and \(j = 4 \) corresponds to \(\alpha = \frac{1}{4} \);
 \(i = 2 \) and \(j = 3 \) corresponds to \(\alpha = \frac{2}{3} \);
 \(i = 3 \) and \(j = 4 \) corresponds to \(\alpha = \frac{3}{4} \).

 Constraint: \(ia \) and \(ja \) must constitute a valid pair \((ia,ja)\) = \((0,1), (1,2), (1,3), (1,4), (2,3) \) or \((3,4)\).

3: \(ja \) – Integer

 \(\text{Input} \)

 On entry: the value of \(N \). Note that the order of the last member in the required sequence of function values is given by \(\alpha + N \).

 Constraint: \(0 \leq \text{nl} \leq 100 \).

4: \(\text{nl} \) – Integer

 \(\text{Input} \)

 On entry: the value of \(N \). Note that the order of the last member in the required sequence of function values is given by \(\alpha + N \).

 Constraint: \(0 \leq \text{nl} \leq 100 \).

5: \(b[\text{nl}+1] \) – double

 \(\text{Output} \)

 On exit: with \(\text{fail.code} = \text{NE_NOERROR} \) or \(\text{fail.code} = \text{NW_SOME_PRECISION_LOSS} \), the required sequence of function values: \(b(n) \) contains \(K_{\alpha+n}(x) \) for \(n = 0, 1, \ldots, N \).
5 Error Indicators and Warnings

NE_REAL
On entry, \(x = \langle \text{value} \rangle \).
Constraint: \(x > 0.0 \).

NE_INT
On entry, \(n l = \langle \text{value} \rangle \).
Constraint: \(0 \leq n l \leq 100 \).

NE_INT_2
On entry, \(i a = \langle \text{value} \rangle \), \(j a = \langle \text{value} \rangle \).
Constraint: \(i a \) and \(j a \) must constitute a valid pair \((i a,j a) \).

NE_OVERFLOW_LIKELY
The evaluation has been abandoned due to the likelihood of overflow.

NW_SOME_PRECISION_LOSS
The evaluation has been completed but some precision has been lost.

NE_TOTAL_PRECISION_LOSS
The evaluation has been abandoned due to total loss of precision.

NE_TERMINATION_FAILURE
The evaluation has been abandoned due to failure to satisfy the termination condition.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy
All constants in the underlying function are specified to approximately 18 digits of precision. If \(t \) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside the underlying function, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, |\log_{10} x|) \) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x \), the less the precision in the result.

6.2 References

7 See Also
None.
8 Example
The example program evaluates $K_0(x), K_1(x), K_2(x)$ and $K_3(x)$ at $x = 0.5$, and prints the results.

8.1 Program Text

```c
/* nag_bessel_k_alpha (sl8egc) Example Program.
 * * Copyright 2000 Numerical Algorithms Group.
 * * NAG C Library
 * * Mark 6, 2000.
 */

#include <stdio.h>
#include <nag.h>
#include <nag_stdblib.h>
#include <nags.h>

int main(void)
{
    double alpha;
    double b[101];
    double x;
    Integer i;
    Integer ia;
    Integer exit_status=0;
    Integer ja;
    Integer nl;
    NagError fail;

    INIT_FAIL(fail);
    Vprintf("sl8egc Example Program Results\n\n");
    /* Skip heading in data file */
    Vscanf("%*[\n]");
    while (scanf("%lf %ld %ld %ld%*[\n]", &x, &ia, &ja, &nl) != EOF)
    {
        Vprintf("\n x    ia   ja   nl\n\n");
        Vprintf("%12.4e %12.4e\n", x, ia, ja, nl);
        sl8egc (x, ia, ja, nl, b, &fail);
        if (fail.code == NE_NOERROR)
        {
            Vprintf(" Requested values of K_alpha(X)\n\n");
            alpha = (double) ia / (double) ja;
            Vprintf(" alpha = K_alpha(X)\n");
            for (i = 0; i <= nl; ++i)
            {
                Vprintf(" %12.4e %12.4e\n", alpha, b[i]);
                alpha += 1.;
            }
        }
        else
        {
            Vprintf("Error from sl8egc.\n\n", fail.message);
            exit_status = 1;
            goto END;
        }
    }
}
```
s18egc

END:
 return exit_status;
}

8.2 Program Data
s18egc Example Program Data
 0.5 0 1 3 : Values of x, ia, ja and nl

8.3 Program Results
s18egc Example Program Results

 x ia ja nl
 0.5 0 1 3

Requested values of K_alpha(X)

 alpha K_alpha(X)
 0.0000e+00 9.2442e-01
 1.0000e+00 1.6564e+00
 2.0000e+00 7.5502e+00
 3.0000e+00 6.2058e+01