NAG C Library Function Document

nag_bessel_k_nu_scaled (s18edc)

1 Purpose

nag_bessel_k_nu_scaled (s18edc) returns the value of the scaled modified Bessel function $e^{\nu}K_{\nu/4}(x)$ for real $x > 0$.

2 Specification

double nag_bessel_k_nu_scaled (double x, Integer nu, NagError *fail)

3 Description

This routine evaluates an approximation to the scaled modified Bessel function of the second kind $e^{\nu}K_{\nu/4}(x)$, where the order $\nu = -3, -2, -1, 1, 2$ or 3 and x is real and positive. For negative orders the formula

$$K_{\nu/4}(x) = K_{\nu}(x)$$

is used.

4 Parameters

1: x – double

 On entry: the argument x of the function.
 Constraint: $x > 0.0$.

2: nu – Integer

 On entry: the argument ν of the function.
 Constraint: $1 \leq \text{abs(nu)} \leq 3$.

3: fail – NagError *

 Input/Output
 The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL

 On entry, $x = \langle\text{value}\rangle$.
 Constraint: $x > 0.0$.

NE_INT

 On entry, $\text{nu} = \langle\text{value}\rangle$.
 Constraint: $1 \leq \text{abs(nu)} \leq 3$.

NE_OVERFLOW_LIKELY

 The evaluation has been abandoned due to the likelihood of overflow. The result is returned as zero.

NW_SOME_PRECISION_LOSS

 The evaluation has been completed but some precision has been lost.

[NP3491/6]
NE_TOTAL_PRECISION_LOSS
The evaluation has been abandoned due to total loss of precision. The result is returned as zero.

NE_TERMINATION_FAILURE
The evaluation has been abandoned due to failure to satisfy the termination condition. The result is returned as zero.

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy
All constants in the underlying function are specified to approximately 18 digits of precision. If \(t \) denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary function inside the underlying function, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, \lfloor \log_{10} x \rfloor) \) represents the number of digits lost due to the argument reduction. Thus the larger the value of \(x \), the less the precision in the result.

6.2 References

7 See Also
None.

8 Example
The example program reads values of the arguments \(x \) and \(\nu \) from a file, evaluates the function and prints the results.

8.1 Program Text
/* nag_bessel_k_nu_scaled (s18edc) Example Program. *
 * Copyright 2000 Numerical Algorithms Group. *
 * NAG C Library *
 * Mark 6, 2000. */

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)
{
 double x;
 double y;
Integer exit_status=0;
Integer nu;
NagError fail;

INIT_FAIL(fail);
Vprintf("sl8edc Example Program Results\n\n");
/* Skip heading in data file */
Vscanf("%*[\n]!");
Vprintf("\n x nu y\n\n");
while (scanf("%lf %ld%*[\n]", &x, &nu) != EOF)
{
y = sl8edc (x, nu, &fail);
if (fail.code == NE_NOERROR)
 Vprintf("%4.1f %6ld %12.4e\n", x, nu, y);
else
 {
 Vprintf("Error from sl8edc.\n\n", fail.message);
 exit_status = 1;
 goto END;
 }
}
END:
return exit_status;

8.2 Program Data

sl8edc Example Program Data
3.9 -3
1.4 -2
8.2 -1
6.7 1
0.5 2
2.3 3 : Values of x and nu

8.3 Program Results

sl8edc Example Program Results

<table>
<thead>
<tr>
<th>x</th>
<th>nu</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>-3</td>
<td>6.5781e-01</td>
</tr>
<tr>
<td>1.4</td>
<td>-2</td>
<td>1.0592e+00</td>
</tr>
<tr>
<td>8.2</td>
<td>-1</td>
<td>4.3297e-01</td>
</tr>
<tr>
<td>6.7</td>
<td>1</td>
<td>4.7791e-01</td>
</tr>
<tr>
<td>0.5</td>
<td>2</td>
<td>1.7725e+00</td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>8.7497e-01</td>
</tr>
</tbody>
</table>