NAG C Library Function Document

nag_kernel_density_estim (g10bac)

1 Purpose

nag_kernel_density_estim (g10bac) performs kernel density estimation using a Gaussian kernel.

2 Specification

```c
#include <nag.h>
#include <nagl10.h>

void nag_kernel_density_estim(Integer n, const double x[], double window,
   double low, double high, Integer ns, double smooth[], double t[],
   NagError *fail)
```

3 Description

Given a sample of \(n \) observations, \(x_1, x_2, \ldots, x_n \), from a distribution with unknown density function, \(f(x) \), an estimate of the density function, \(\hat{f}(x) \), may be required. The simplest form of density estimator is the histogram. This may be defined by:

\[
\hat{f}(x) = \frac{1}{nh} n_j; \quad a + (j-1)h < x < a + jh, \quad j = 1, 2, \ldots, n_s,
\]

where \(n_j \) is the number of observations falling in the interval \(a + (j-1)h \) to \(a + jh \), \(a \) is the lower bound to the histogram and \(b = n_s h \) is the upper bound. The value \(h \) is known as the window width. To produce a smoother density estimate a kernel method can be used. A kernel function, \(K(t) \), satisfies the conditions:

\[
\int_{-\infty}^{\infty} K(t) \, dt = 1 \quad \text{and} \quad K(t) \geq 0.
\]

The kernel density estimator is then defined as:

\[
\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right).
\]

The choice of \(K \) is usually not important but to ease the computational burden use can be made of the Gaussian kernel defined as:

\[
K(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.
\]

The smoothness of the estimator depends on the window width \(h \). The larger the value of \(h \) the smoother the density estimate. The value of \(h \) can be chosen by examining plots of the smoothed density for different values of \(h \) or by using cross-validation methods (Silverman (1990)).

Silverman (1982) and Silverman (1990) show how the Gaussian kernel density estimator can be computed using a fast Fourier transform (FFT). In order to compute the kernel density estimate over the range \(a \) to \(b \) the following steps are required:

1. discretize the data to give \(n_s \) equally spaced points \(t_l \) with weights \(\zeta_l \) (see Jones and Lotwick (1984));
2. compute the FFT of the weights \(\zeta_l \) to give \(Y_l \);
3. compute \(\zeta_l = e^{-\frac{1}{2}h^2 s_l^2} Y_l \) where \(s_l = 2\pi l/(b - a) \);
4. find the inverse FFT of \(\zeta_l \) to give \(\hat{f}(x) \).
4 Parameters

1: n – Integer
 \textit{Input}
 \textbf{On entry:} the number of observations in the sample, \textit{n}.
 \textit{Constraint:} \textit{n[1]} > 0.

2: \textbf{x[n]} – const double
 \textit{Input}
 \textbf{On entry:} the \textit{n} observations, \textit{x}_i, for \textit{i} = 1, 2, \ldots, \textit{n}.

3: \textbf{window} – double
 \textit{Input}
 \textbf{On entry:} the window width, \textit{h}.
 \textit{Constraint:} \textit{window[1]} > 0.0.

4: \textbf{low} – double
 \textit{Input}
 \textbf{On entry:} the lower limit of the interval on which the estimate is calculated, \textit{a}. For most applications \textit{low[1]} should be at least three window widths below the lowest data point.
 \textit{Constraint:} \textit{low[1]} < \textit{high[1]}.

5: \textbf{high} – double
 \textit{Input}
 \textbf{On entry:} the upper limit of the interval on which the estimate is calculated, \textit{b}. For most applications \textit{high[1]} should be at least three window widths above the highest data point.

6: \textbf{ns} – Integer
 \textit{Input}
 \textbf{On entry:} the number of points at which the estimate is calculated, \textit{n}_s.
 \textit{Constraints:} \textit{ns[1]} \geq 2.
 The largest prime factor of \textit{ns[1]} must not exceed 19, and the total number of prime factors of \textit{ns[1]}, counting repetitions, must not exceed 20.

7: \textbf{smooth[ns]} – double
 \textit{Output}
 \textbf{On exit:} the \textit{n}_s values of the density estimate, \(\hat{f}(t_l) \), for \textit{l} = 1, 2, \ldots, \textit{n}_s.

8: \textbf{t[ns]} – double
 \textit{Output}
 \textbf{On exit:} the points at which the estimate is calculated, \textit{t}_l, for \textit{l} = 1, 2, \ldots, \textit{n}_s.

9: \textbf{fail} – NagError *
 \textit{Input/Output}
 The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

\textbf{NE_INT_ARG_LE}
 On entry, \textit{n[1]} must not be less than or equal to 0: \textit{n[1]} = <\textit{value}>.

\textbf{NE_INT_ARG_LT}
 On entry, \textit{ns[1]} must not be less than 2: \textit{ns[1]} = <\textit{value}>.

\textbf{NE_REAL_ARG_LE}
 On entry, \textit{window[1]} must not be less than or equal to 0.0: \textit{window[1]} = <\textit{value}>.
NE_REAL_ARG_LE

On entry, high[] = <value> while low[] = <value>. These parameters must satisfy high[] > low[].

NE_C06_FACTORS

At least one of the prime factors of ns[] is greater than 19 or ns[] has more than 20 prime factors.

NE_G10BA_INTERVAL

On entry, the interval given by low[] to high[] does not extend beyond three window[] widths at either extreme of the data set. This may distort the density estimate in some cases.

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The time for computing the weights of the discretized data is of order n while the time for computing the FFT is of order n,log(n) as is the time for computing the inverse of the FFT.

6.1 Accuracy

See Jones and Lotwick (1984) for a discussion of the accuracy of this method.

6.2 References

7 See Also

None.

8 Example

A sample of 1000 standard Normal (0,1) variates are generated using nag_random_normal (g05ddc) and the density estimated on 100 points with a window width of 0.1.
8.1 Program Text

/* nag_kernel_density_estim (gl0bac) Example Program. */
/* Copyright 2000 Numerical Algorithms Group. */
/* Mark 6, 2000. */
/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nag01.h>
#include <nag05.h>
#include <nag10.h>

int main(void)
{
 Integer i, init, increment, j, n, ns;
 Integer exit_status=0;
 double enda, endb, *s=0, high, low, *smooth=0, window, *x=0;
 Integer ifail, *isort=0;
 Boolean usefft;
 NagError fail;

 INIT_FAIL(fail);
 Vprintf("gl0bac Example Program Results\n");

 /* Skip heading in data file */
 Vscanf("%*[\n] ");
 Vscanf("%lf ", &window);
 Vscanf("%lf , %lf", &low, &high);
 /* Generate Normal (0,1) Distribution */
 n = 1000;
 ns = 100;
 if (!((x = NAG_ALLOC(n, double))
 || !s = NAG_ALLOC(ns, double))
 || !smooth = NAG_ALLOC(ns, double))
 || !isort = NAG_ALLOC(ns, Integer))
 {
 Vprintf("Allocation failure\n");
 exit_status = -1;
 goto END;
 }

 init = 0;
 g05cbc(init);
 enda = 0.0;
 endb = 1.0;
 for (i = 0; i < n; i++)
 x[i] = g05ddc(enda, endb);

 /* Perform kernel density estimation */
 usefft = FALSE;
 ifail = 0;
 gl0bac(n, x, window, low, high, ns, smooth, s, &fail);
 if (fail.code != NE_NOERROR)
g10 - Smoothing in Statistics

```c
{  Vprintf("Error from g10bac.\n%s\n", fail.message);  exit_status = 1;  goto END; }
}
printf( "  Points  Density  Points  Density  Points  Density
  Value  Value  Value  Value\n" );
increment = 25;
for (i=1; i<= ns/4; i++)  {
  printf("%10.4f %10.4f", s[i-1], smooth[i-1]);  
  for (j=1; j <= 3; j++)  {
    printf("%10.4f %10.4f", s[i-1+j*increment], smooth[i-1+j*increment]);
  }
  printf("\n");
}  
END:
if (x) NAG_FREE(x);
if (s) NAG_FREE(s);
if (smooth) NAG_FREE(smooth);
if (isort) NAG_FREE(isort);
return exit_status;
}
```

8.2 Program Data

g10bac Example Program Data

0.1
-4.0, 4.0

8.3 Program Results

g10bac Example Program Results

<table>
<thead>
<tr>
<th>Points</th>
<th>Density</th>
<th>Points</th>
<th>Density</th>
<th>Points</th>
<th>Density</th>
<th>Points</th>
<th>Density</th>
<th>Points</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.9600</td>
<td>0.0000</td>
<td>-1.9600</td>
<td>0.0508</td>
<td>0.0400</td>
<td>0.3698</td>
<td>2.0400</td>
<td>0.0464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.8800</td>
<td>0.0001</td>
<td>-1.8800</td>
<td>0.0573</td>
<td>0.1200</td>
<td>0.3614</td>
<td>2.1200</td>
<td>0.0361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.8000</td>
<td>0.0011</td>
<td>-1.8000</td>
<td>0.0763</td>
<td>0.2000</td>
<td>0.3393</td>
<td>2.2000</td>
<td>0.0344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.7200</td>
<td>0.0037</td>
<td>-1.7200</td>
<td>0.0763</td>
<td>0.2800</td>
<td>0.3346</td>
<td>2.2800</td>
<td>0.0307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.6400</td>
<td>0.0049</td>
<td>-1.6400</td>
<td>0.0719</td>
<td>0.3600</td>
<td>0.3618</td>
<td>2.3600</td>
<td>0.0207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.5600</td>
<td>0.0023</td>
<td>-1.5600</td>
<td>0.0942</td>
<td>0.4400</td>
<td>0.3553</td>
<td>2.4400</td>
<td>0.0096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.4800</td>
<td>0.0003</td>
<td>-1.4800</td>
<td>0.1292</td>
<td>0.5200</td>
<td>0.3312</td>
<td>2.5200</td>
<td>0.0071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.4000</td>
<td>0.0000</td>
<td>-1.4000</td>
<td>0.1440</td>
<td>0.6000</td>
<td>0.3356</td>
<td>2.6000</td>
<td>0.0133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.3200</td>
<td>0.0003</td>
<td>-1.3200</td>
<td>0.1659</td>
<td>0.6800</td>
<td>0.3496</td>
<td>2.6800</td>
<td>0.0162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.2400</td>
<td>0.0021</td>
<td>-1.2400</td>
<td>0.2181</td>
<td>0.7600</td>
<td>0.3310</td>
<td>2.7600</td>
<td>0.0117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.1600</td>
<td>0.0047</td>
<td>-1.1600</td>
<td>0.2511</td>
<td>0.8400</td>
<td>0.2922</td>
<td>2.8400</td>
<td>0.0074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.0800</td>
<td>0.0039</td>
<td>-1.0800</td>
<td>0.2443</td>
<td>0.9200</td>
<td>0.2812</td>
<td>2.9200</td>
<td>0.0077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.0000</td>
<td>0.0015</td>
<td>-1.0000</td>
<td>0.2443</td>
<td>1.0000</td>
<td>0.3011</td>
<td>3.0000</td>
<td>0.0073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.9200</td>
<td>0.0012</td>
<td>-0.9200</td>
<td>0.2415</td>
<td>1.0800</td>
<td>0.2872</td>
<td>3.0800</td>
<td>0.0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.8400</td>
<td>0.0038</td>
<td>-0.8400</td>
<td>0.2565</td>
<td>1.1600</td>
<td>0.2134</td>
<td>3.1600</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.7600</td>
<td>0.0062</td>
<td>-0.7600</td>
<td>0.2970</td>
<td>1.2400</td>
<td>0.1577</td>
<td>3.2400</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.6800</td>
<td>0.0115</td>
<td>-0.6800</td>
<td>0.3435</td>
<td>1.3200</td>
<td>0.1395</td>
<td>3.3200</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.6000</td>
<td>0.0218</td>
<td>-0.6000</td>
<td>0.3642</td>
<td>1.4000</td>
<td>0.1370</td>
<td>3.4000</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.5200</td>
<td>0.0231</td>
<td>-0.5200</td>
<td>0.3822</td>
<td>1.4800</td>
<td>0.1315</td>
<td>3.4800</td>
<td>0.0029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.4400</td>
<td>0.0191</td>
<td>-0.4400</td>
<td>0.4081</td>
<td>1.5600</td>
<td>0.1295</td>
<td>3.5600</td>
<td>0.0055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.3600</td>
<td>0.0230</td>
<td>-0.3600</td>
<td>0.4051</td>
<td>1.6400</td>
<td>0.1270</td>
<td>3.6400</td>
<td>0.0031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.2800</td>
<td>0.0297</td>
<td>-0.2800</td>
<td>0.3843</td>
<td>1.7200</td>
<td>0.1109</td>
<td>3.7200</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.2000</td>
<td>0.0316</td>
<td>-0.2000</td>
<td>0.3447</td>
<td>1.8000</td>
<td>0.0947</td>
<td>3.8000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.1200</td>
<td>0.0417</td>
<td>-0.1200</td>
<td>0.3214</td>
<td>1.8800</td>
<td>0.0847</td>
<td>3.8800</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.0400</td>
<td>0.0536</td>
<td>-0.0400</td>
<td>0.3474</td>
<td>1.9600</td>
<td>0.0655</td>
<td>3.9600</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>