NAG C Library Function Document

nag_prob_non_central_f_dist (g01gdc)

1 Purpose

nag_prob_non_central_f_dist (g01gdc) returns the probability associated with the lower tail of the non-central F or variance-ratio distribution.

2 Specification

```c
#include <nag.h>
#include <nag01.h>

double nag_prob_non_central_f_dist(double f, double df1, double df2,
                                   double lambda, double tol, Integer max_iter, NagError *fail)
```

3 Description

The lower tail probability of the non-central F-distribution with ν_1 and ν_2 degrees of freedom and non-centrality parameter λ, $P(F \leq f : \nu_1, \nu_2; \lambda)$, is defined by

$$P(F \leq f : \nu_1, \nu_2; \lambda) = \int_0^f p(F : \nu_1, \nu_2; \lambda)dF$$

where

$$P(F : \nu_1, \nu_2; \lambda) = \sum_{j=0}^{\infty} e^{-\lambda/2} \left(\frac{\lambda/2}{j!}\right)^j \frac{((\nu_1 + 2j)/2, \nu_2/2)}{B((\nu_1 + 2j)/2, \nu_2/2)}$$

$$\times u^{(\nu_1 + 2j - 2)/2}[\nu_2 + (\nu_1 + 2j)u]^{-((\nu_1 + 2j + \nu_2)/2)}$$

and $B(\cdot, \cdot)$ is the beta function.

The probability is computed by means of a transformation to a non-central beta distribution;

$$P(F \leq f : \nu_1, \nu_2; \lambda) = P_B(X \leq x : a, b; \lambda)$$

where $x = \frac{\nu_1 f}{\nu_1 f + \nu_2}$ and $P_B(X \leq x : a, b; \lambda)$ is the lower tail probability integral of the non-central beta distribution with parameters a, b, and λ.

If ν_2 is very large, greater than 10^6, then a χ^2 approximation is used.

4 Parameters

1: f – double
 On entry: the deviate from the non-central F-distribution, f.
 Constraint: $f > 0$.

2: df1 – double
 On entry: the degrees of freedom of the numerator variance, ν_1.
 Constraint: $0.0 < \text{df1} \leq 1.0e6$.

3: df2 – double
 On entry: the degrees of freedom of the denominator variance, ν_2.
 Constraint: $\text{df2} > 0.0$.

[NP3491/6]
4:
 lambda – double
 Input
 On entry: the non-centrality parameter, \(\lambda \).

 Constraint: \(0.0 \leq \text{lambda} \leq -2.0 \times \log(U) \) where \(U \) is the safe range parameter as defined by

 nag_real_safe_small_number (X02AMC).

5:
 tol – double
 Input
 On entry: the relative accuracy required by the user in the results. If nag_prob_non_central_f_dist is
 entered with **tol** greater than or equal to 1.0 or less than \(10 \times \text{machine precision} \) (see
 nag_machine_precision (X02AJC)), then the value of \(10 \times \text{machine precision} \) is used instead.

6:
 max_iter – Integer
 Input
 On entry: the maximum number of iterations to be used.

 Suggested value: 500. See nag_prob_non_central_chi_sq (g01gcc) and
 nag_prob_non_central_beta_dist (g01gec) for further details.

 Constraint: \(\text{max_iter} \geq 1 \).

7:
 fail – NagError *
 Input/Output
 The NAG error parameter (see the Essential Introduction).

5
Error Indicators and Warnings

NE_REAL_ARG_CONS

*On entry, df1 = *<value>*.*

This parameter must satisfy \(0.0 < \text{df1} \leq 1.0e6 \).

*On entry, lambda = *<value>*.*

This parameter must satisfy \(0.0 \leq \text{lambda} \leq -2.0 \times \log(X02AMC) \).

NE_REAL_ARG_LE

*On entry, df2 must not be less than or equal to 0.0: df2 = *<value>*.*

*On entry, f must not be less than or equal to 0.0: f = *<value>*.*

NE_INT_ARG_LT

*On entry, max_iter must not be less than 1: max_iter = *<value>*.*

NE_CONV

The solution has failed to converge in *<value>* iterations, consider increasing max_iter or tol.

NE_PROB_F

The required probability cannot be computed accurately. This may happen if the result would be
very close to zero or one. Alternatively the values of df1 and f may be too large. In the latter case
the user could try using a normal approximation, see Abramowitz and Stegun (1972).

NE_PROB_F_INIT

The required accuracy was not achieved when calculating the initial value of the central \(F \) or \(\chi^2 \)
probability. The user should try a larger value of tol. If the \(\chi^2 \) approximation is being used then
nag_prob_non_central_f_dist returns zero otherwise the value returned should be an approximation
to the correct value.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the
function call is correct then please consult NAG for assistance.

6 Further Comments
When both ν_1 and ν_2 are large a normal approximation may be used and when only ν_1 is large a χ^2
approximation may be used. In both cases λ is required to be of the same order as ν_1. See Abramowitz and
Stegun Abramowitz and Stegun (1972) for further details.

6.1 Accuracy
The relative accuracy should be as specified by tol. For further details see nag_prob_non_central_chi_sq
(g01gcc) and nag_prob_non_central_beta_dist (g01gdc).

6.2 References
Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd
Edition)

7 See Also
nag_prob_non_central_chi_sq (g01gcc)
nag_prob_non_central_beta_dist (g01gdc)

8 Example
Values from, and degrees of freedom for F-distributions are read, the lower-tail probabilities computed,
and all these values printed, until the end of data is reached.

8.1 Program Text

/* nag_prob_non_central_f_dist (g01gdc) Example Program.
 *
 * Copyright 2000 Numerical Algorithms Group.
 *
 * NAG C Library
 *
 * Mark 6, 2000.
 */

#include <stdio.h>
#include <nag.h>
#include <nag01.h>

int main(void)
{
 double df1, df2, f, prob, lambda, tol;
 Integer max_iter;
 Integer exit_status=0;
 NagError fail;

 INIT_FAIL(fail);
 Vprintf("g01gdc Example Program Results\n");

 /* Skip heading in data file */
 Vscanf("%*[\n]");

 return 0;
}
Vprintf ("\n f df1 df2 lambda prob\n\n");
tol = 5e-6;
max_iter = 50;
while ((scanf("%lf %lf %lf %lf *[\n]", &f, &df1, &df2, &lambda)) != EOF)
{
 prob = g01gdc(f, df1, df2, lambda, tol, max_iter, &fail);
 if (fail.code != NE_NOERROR)
 {
 Vprintf("Error from g01gdc.\n%s\n", fail.message);
 exit_status=1;
 goto END;
 }
 Vprintf("%8.3f %8.3f %8.3f %8.3f %8.4f\n", f, df1, df2, lambda, prob);
}
END:
return exit_status;
}

8.2 Program Data

g01gdc Example Program Data
 5.5 1.5 25.5 3.0 :f df1 lambda
 39.9 1.0 1.0 2.0 :f df1 lambda
 2.5 20.25 1.0 0.0 :f df1 lambda

8.3 Program Results

g01gdc Example Program Results

<table>
<thead>
<tr>
<th>f</th>
<th>df1</th>
<th>df2</th>
<th>lambda</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.500</td>
<td>1.500</td>
<td>25.50</td>
<td>3.000</td>
<td>0.8214</td>
</tr>
<tr>
<td>39.900</td>
<td>1.000</td>
<td>1.000</td>
<td>2.000</td>
<td>0.8160</td>
</tr>
<tr>
<td>2.500</td>
<td>20.25</td>
<td>1.000</td>
<td>0.000</td>
<td>0.5342</td>
</tr>
</tbody>
</table>