NAG C Library Function Document

nag_1d_quad_wt_trig_1 (d01snc)

1 Purpose

nag_1d_quad_wt_trig_1 (d01snc) calculates an approximation to the sine or the cosine transform of a function g over $[a, b]$:

$$I = \int_{a}^{b} g(x) \sin(\omega x) \, dx \quad \text{or} \quad I = \int_{a}^{b} g(x) \cos(\omega x) \, dx$$

(for a user-specified value of ω).

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_wt_trig_1 (double (*g)(double x, Nag_User *comm),
 double a, double b, double omega, Nag_TrigTransform wt_func,
 double epsabs, double epsrel, Integer max_num_subint,
 double *result, double *abserr, NAG_QuadProgress *qp,
 Nag_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QFOUR (Piessens et al. (1983)). It is an adaptive routine, designed to integrate a function of the form $g(x)w(x)$, where $w(x)$ is either $\sin(\omega x)$ or $\cos(\omega x)$. If a sub-interval has length $L = |b - a|2^{-l}$

then the integration over this sub-interval is performed by means of a modified Clenshaw-Curtis procedure (Piessens and Branders (1975)) if $L\omega > 4$ and $l \leq 20$. In this case a Chebyshev-series approximation of degree 24 is used to approximate $g(x)$, while an error estimate is computed from this approximation together with that obtained using Chebyshev-series of degree 12. If the above conditions do not hold then Gauss 7-point and Kronrod 15-point rules are used. The algorithm, described in Piessens et al. (1983), incorporates a global acceptance criterion (as defined in Malcolm and Simpson (1976)) together with the c-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described in Piessens et al. (1983).

4 Parameters

1: \hspace{1cm} g \hspace{1cm} Function

The function g, supplied by the user, must return the value of the function g at a given point.

The specification of g is:

\begin{verbatim}
double g(double x, Nag_User *comm)
\end{verbatim}

\begin{verbatim}
1: \hspace{1cm} x \hspace{1cm} Input
\end{verbatim}

\textit{On entry:} the point at which the function g must be evaluated.
2: \textbf{comm} – Nag_User * \\
\textit{On entry/on exit:} pointer to a structure of type Nag_User with the following member: \\
\begin{itemize}
 \item p – Pointer \hspace{1cm} \textit{Input/Output}
\end{itemize}
\textit{On entry/on exit:} the pointer comm\textsuperscript{\texttt{\rightarrow}}p should be cast to the required type, e.g.,
\begin{verbatim}
struct user *s = (struct user *)comm\textsuperscript{\texttt{\rightarrow}}p,
\end{verbatim}
to obtain the original object’s address with appropriate type. (See the argument comm below.)

2: \textbf{a} – double \hspace{1cm} \textit{Input}
\textit{On entry:} the lower limit of integration, \(a\).

3: \textbf{b} – double \hspace{1cm} \textit{Input}
\textit{On entry:} the upper limit of integration, \(b\). It is not necessary that \(a < b\).

4: \textbf{omega} – double \hspace{1cm} \textit{Input}
\textit{On entry:} the parameter \(\omega\) in the weight function of the transform.

5: \textbf{wt_func} – Nag_TrigTransform \hspace{1cm} \textit{Input}
\textit{On entry:} indicates which integral is to be computed:
\begin{itemize}
 \item if \texttt{wt_func = Nag_Cosine}, \(w(x) = \cos(\omega x)\);
 \item if \texttt{wt_func = Nag_Sine}, \(w(x) = \sin(\omega x)\).
\end{itemize}
\textit{Constraint:} \texttt{wt_func = Nag_Cosine} or \texttt{Nag_Sine}.

6: \textbf{epsabs} – double \hspace{1cm} \textit{Input}
\textit{On entry:} the absolute accuracy required. If \texttt{epsabs} is negative, the absolute value is used. See Section 6.1.

7: \textbf{epsrel} – double \hspace{1cm} \textit{Input}
\textit{On entry:} the relative accuracy required. If \texttt{epsrel} is negative, the absolute value is used. See Section 6.1.

8: \textbf{max_num_subint} – Integer \hspace{1cm} \textit{Input}
\textit{On entry:} the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger \texttt{max_num_subint} should be.
\textit{Suggested values:} a value in the range 200 to 500 is adequate for most problems.
\textit{Constraint:} \texttt{max_num_subint} \(\geq 1\).

9: \textbf{result} – double * \hspace{1cm} \textit{Output}
\textit{On exit:} the approximation to the integral \(I\).

10: \textbf{abserr} – double * \hspace{1cm} \textit{Output}
\textit{On exit:} an estimate of the modulus of the absolute error, which should be an upper bound for \(|I\textendash result|\).
11: \texttt{qp} – \texttt{Nag QuadProgress} *

Pointer to structure of type \texttt{Nag QuadProgress} with the following members:

\begin{itemize}
 \item \texttt{num_subint} – Integer \textit{Output}
 \textit{On exit:} the actual number of sub-intervals used.
 \item \texttt{fun_count} – Integer \textit{Output}
 \textit{On exit:} the number of function evaluations performed by \texttt{nag ld quad wt trig 1}.
 \item \texttt{sub_int_beg_pts} – double * \textit{Output}
 \item \texttt{sub_int_end_pts} – double * \textit{Output}
 \item \texttt{sub_int_result} – double * \textit{Output}
 \item \texttt{sub_int_error} – double * \textit{Output}
\end{itemize}

\textit{On exit:} these pointers are allocated memory internally with \texttt{max num subint} elements. If an error exit other than \texttt{NE_INT_ARG_LT, NE_BAD_PARAM} or \texttt{NE_ALLOC_FAIL} occurs, these arrays will contain information which may be useful. For details, see Section 6.

Before a subsequent call to \texttt{nag ld quad wt trig 1} is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro \texttt{NAG_FREE}.

12: \texttt{comm} – \texttt{Nag User} *

\textit{On entry/on exit:} pointer to a structure of type \texttt{Nag User} with the following member:

\begin{itemize}
 \item \texttt{p} – Pointer \textit{Input/Output}
 \textit{On entry/on exit:} the pointer \texttt{p}, of type Pointer, allows the user to communicate information to and from the user-defined function \texttt{g()).} An object of the required type should be declared by the user, e.g., a structure, and its address assigned to the pointer \texttt{p} by means of a cast to \texttt{Pointer} in the calling program, e.g., \texttt{comm.p = (Pointer)&s.} The type \texttt{Pointer} is \texttt{void} *.
\end{itemize}

13: \texttt{fail} – \texttt{NagError} *

\textit{Input/Output}

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise \texttt{fail} and set \texttt{fail.print = TRUE} for this function.

5 \textbf{Error Indicators and Warnings}

\texttt{NE_INT_ARG_LT}

\textit{On entry,} \texttt{max num subint} must not be less than 1: \texttt{max num subint} = \texttt{<value>}

\texttt{NE_BAD_PARAM}

\textit{On entry,} parameter \texttt{wt_func} had an illegal value.

\texttt{NE_ALLOC_FAIL}

Memory allocation failed.

\texttt{NE_QUAD_MAX_SUBDIV}

The maximum number of subdivisions has been reached: \texttt{max num subint} = \texttt{<value>}

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is
designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}, or increasing the value of \texttt{max_num_subint}.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: \texttt{epsabs} = \langle \texttt{value} \rangle, \texttt{epsrel} = \langle \texttt{value} \rangle. The error may be underestimated. Consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (\langle \texttt{value} \rangle, \langle \texttt{value} \rangle). The same advice applies as in the case of \texttt{NE_QUAD_MAX_SUBDIV}.

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation. The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained. The same advice applies as in the case of \texttt{NE_QUAD_MAX_SUBDIV}.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent. Please note that divergence can also occur with any error exit other than \texttt{NE_INT_ARG_LT}, \texttt{NE_BAD_PARAM} or \texttt{NE_ALLOC_FAIL}.

6 Further Comments

The time taken by \texttt{tnag_1d_quad_wt_trig_1} depends on the integrand and the accuracy required. If the function fails with an error exit other than \texttt{NE_INT_ARG_LT}, \texttt{NE_BAD_PARAM} or \texttt{NE_ALLOC_FAIL}, then the user may wish to examine the contents of the structure \texttt{qp}. These contain the end-points of the sub-intervals used by \texttt{tnag_1d_quad_wt_trig_1} along with the integral contributions and error estimates over the sub-intervals. Specifically, for \(i = 1, 2, \ldots, n\), let \(r_i\) denote the approximation to the value of the integral over the sub-interval \([a_i, b_i]\) in the partition of \([a, b]\) and \(e_i\) be the corresponding absolute error estimate. Then, \(\int_a^b g(x)w(x)\,dx \simeq r_i\) and \texttt{result} = \(\sum_{i=1}^n r_i\) unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens \textit{et al.} (1983)). In this case, \texttt{result} (and \texttt{abserr}) are taken to be the values returned from the extrapolation process. The value of \(n\) is returned in \texttt{num_subint}, and the values \(a_i\), \(b_i\), \(r_i\) and \(e_i\) are stored in the structure \texttt{qp} as

\[
\begin{align*}
 a_i & = \texttt{sub_int_beg_pts}[i - 1], \\
 b_i & = \texttt{sub_int_end_pts}[i - 1], \\
 r_i & = \texttt{sub_int_result}[i - 1] \text{ and} \\
 e_i & = \texttt{sub_int_error}[i - 1].
\end{align*}
\]

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

\[|I - \texttt{result}| \leq \texttt{tol}\]

where

\[\texttt{tol} = \max\{|\texttt{epsabs}|, |\texttt{epsrel}| \times |I|\}\]

and \texttt{epsabs} and \texttt{epsrel} are user-specified absolute and relative error tolerances. Moreover it returns the
quantity abserr which, in normal circumstances, satisfies

$$|I - \text{result}| \leq \text{abserr} \leq \text{tol}.$$

6.2 References

Wynn P (1956) On a device for computing the $e_m(S_n)$ transformation *Math. Tables Aids Comput.* 10 91–96

7 See Also

nag_1d_quad_gen_1 (d01sjc)

8 Example

To compute

$$\int_0^1 \ln x \sin(10\pi x) \, dx.$$

8.1 Program Text

```c
/* nag_1d_quad_wt_trig_1(d01snc) Example Program */
/* * Copyright 1998 Numerical Algorithms Group. *
* * Mark 5, 1998. *
* * Mark 6 revised, 2000. */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

static double g(double x, Nag_User *comm);

main()
{
    double a, b;
    double omega;
    double epsabs, abserr, epsrel, result;
    Nag_TrigTransform wt_func;
    Nag_QuadProgress qp;
    Integer max_num_subint;
    static NagError fail;
    Nag_User comm;
```
d01snc

Vprintf("d01snc Example Program Results\n");
epsrel = 0.0001;
epsabs = 0.0;
a = 0.0;
b = 1.0;
omega = X01AAC * 10.0;
wt_func = Nag_Sine;
max_num_subint = 200;
d01snc(g, a, b, omega, wt_func, epsabs, epsrel, max_num_subint, &result,
 &abserr, &qp, &comm, &fail);
Vprintf("a - lower limit of integration = %10.4f\n", a);
Vprintf("b - upper limit of integration = %10.4f\n", b);
Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
Vprintf("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM &&
 fail.code != NE_ALLOC_FAIL)
{
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abserr - estimate of the absolute error = %9.2e\n", abserr);
 Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
 qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
 qp.num_subint);
 /* Free memory used by qp */
 NAG_FREE(qp.sub_int_beg_pts);
 NAG_FREE(qp.sub_int_end_pts);
 NAG_FREE(qp.sub_int_result);
 NAG_FREE(qp.sub_int_error);
 exit(EXIT_SUCCESS);
}
exit(EXIT_FAILURE);
}

static double g(double x, Nag_User *comm)
{
 return (x>0.0) ? log(x) : 0.0;
}

8.2 Program Data

None.

8.3 Program Results

d01snc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04
result - approximation to the integral = -0.12814
abserr - estimate of the absolute error = 3.58e-06
qp.fun_count - number of function evaluations = 275
qp.num_subint - number of subintervals used = 8