NAG C Library Function Document

nag_1d_quad_gen_1 (d01sjc)

1 Purpose

nag_1d_quad_gen_1 (d01sjc) is a general purpose integrator which calculates an approximation to the integral of a function $f(x)$ over a finite interval $[a, b]$:

$$ I = \int_a^b f(x) \, dx. $$

2 Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_gen_1 (double (*f)(double x, Nag_User *comm),
 double a, double b, double epsabs, double epsrel,
 Integer max_num_subint, double *result, double *abserr,
 Nag_QuadProgress *qp, Nag_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAGS (Piessens et al. (1983)). It is an adaptive function, using the Gauss 10-point and Kronrod 21-point rules. The algorithm, described by De Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the e-algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens et al. (1983).

This function is suitable as a general purpose integrator, and can be used when the integrand has singularities, especially when these are of algebraic or logarithmic type.

This function requires the user to supply a function to evaluate the integrand at a single point.

4 Parameters

1: f – function supplied by user

The function f, supplied by the user, must return the value of the integrand f at a given point.

The specification of f is:

```c
double f(double x, Nag_User *comm)
```

1: x – double

On entry: the point at which the integrand f must be evaluated.

2: $comm$ – Nag_User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

```c
p – Pointer
```

On entry/on exit: the pointer $comm\rightarrow p$ should be cast to the required type, e.g.,

```c
struct user *s = (struct user *)comm->p;
```

to obtain the original object’s address with appropriate type. (See the argument $comm$ below.)
2: a – double
 On entry: the lower limit of integration, a.

3: b – double
 On entry: the upper limit of integration, b. It is not necessary that a < b.

4: epsabs – double
 On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See Section 6.1.

5: epsrel – double
 On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See Section 6.1.

6: max_num_subint – Integer
 On entry: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger max_num_subint should be.

Suggested values: a value in the range 200 to 500 is adequate for most problems.

Constraint: max_num_subint ≥ 1.

7: result – double *
 On exit: the approximation to the integral I.

8: abserr – double *
 On exit: an estimate of the modulus of the absolute error, which should be an upper bound for |I–result|.

9: qp – Nag_QuadProgress *
 Pointer to structure of type Nag_QuadProgress with the following members:

 num_subint – Integer
 On exit: the actual number of sub-intervals used.

 fun_count – Integer
 On exit: the number of function evaluations performed by nag_1d_quad_gen_1.

 sub_int_be_pts – double *
 sub_int_end_pts – double *
 sub_int_result – double *
 sub_int_error – double *
 On exit: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL occurs, these arrays will contain information which may be useful. For details, see Section 6.

Before a subsequent call to nag_1d_quad_gen_1 is made, or when the information contained in these arrays is no longer useful, the user should free the storage allocated by these pointers using the NAG macro NAG_FREE.
10: **comm** – Nag_User *

On entry/on exit: pointer to a structure of type Nag_User with the following member:

\[p \rightarrow \text{Pointer} \]

Input/Output

On entry/on exit: the pointer \(p \), of type Pointer, allows the user to communicate information to and from the user-defined function \(f() \). An object of the required type should be declared by the user, e.g., a structure, and its address assigned to the pointer \(p \) by means of a cast to Pointer in the calling program, e.g., \(\text{comm.} p = (\text{Pointer}) \& s \). The type Pointer is \textbf{void} *.

11: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise \texttt{fail} and set \texttt{fail.print = TRUE} for this function.

5 \hspace{1em} \textbf{Error Indicators and Warnings}

NE_INT_ARG_LT

On entry, \texttt{max_num_subint} must not be less than 1: \texttt{max_num_subint} = \texttt{<value>}.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: \texttt{max_num_subint} = \texttt{<value>}. The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}, or increasing the value of \texttt{max_num_subint}.

NE_QUAD_ROUND_OFF_TOL

Round-off error prevents the requested tolerance from being achieved: \texttt{epsabs} = \texttt{<value>}, \texttt{epsrel} = \texttt{<value>}. The error may be underestimated. Consider relaxing the accuracy requirements specified by \texttt{epsabs} and \texttt{epsrel}.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (\texttt{<value>}, \texttt{<value>}). The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

NE_QUAD_ROUND_OFF_EXTRAPL

Round-off error is detected during extrapolation. The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained. The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent. Please note that divergence can occur with any error exit other than **NE_INT_ARG_LT** and **NE_ALLOC_FAIL**.
6 Further Comments

The time taken by nag_1d_quad_gen_1 depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT or NE_ALLOC_FAIL, then the user may wish to examine the contents of the structure *qp*. These contain the end-points of the sub-intervals used by nag_1d_quad_gen_1 along with the integral contributions and error estimates over the sub-intervals.

Specifically, for $i = 1, 2, \ldots, n$, let r_i denote the approximation to the value of the integral over the sub-interval $[a_i, b_i]$ in the partition of $[a, b]$ and e_i be the corresponding absolute error estimate. Then, $\int_{a_i}^{b_i} f(x) \, dx \simeq r_i$ and \textbf{result} = $\sum_{i=1}^{n} r_i$ unless the function terminates while testing for divergence of the integral (see Section 3.4.3 of Piessens et al. (1983)). In this case, \textbf{result} (and \textbf{abserr}) are taken to be the values returned from the extrapolation process. The value of n is returned in \textbf{num_subint}, and the values a_i, b_i, r_i and e_i are stored in the structure *qp* as

$\begin{align*}
a_i &= \text{sub_int_beg_pts}[i - 1], \\
b_i &= \text{sub_int_end_pts}[i - 1], \\
r_i &= \text{sub_int_result}[i - 1] \quad \text{and} \\
e_i &= \text{sub_int_error}[i - 1].
\end{align*}$

6.1 Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I - \textbf{result}| \leq \text{tol}$$

where

$$\text{tol} = \max\{|\text{epsabs}|, |\text{epsrel}| \times |I|\}$$

and \textbf{epsabs} and \textbf{epsrel} are user-specified absolute and relative error tolerances. Moreover, it returns the quantity \textbf{abserr} which, in normal circumstances, satisfies

$$|I - \textbf{result}| \leq \textbf{abserr} \leq \text{tol}.$$

6.2 References

Wynn P (1956) On a device for computing the $e_m(S_n)$ transformation Math. Tables Aids Comput. 10 91–96

7 See Also

nag_1d_quad_osc_1 (d01skc)
nag_1d_quad_brkpts_1 (d01sle)

8 Example

To compute

$$\int_{0}^{2\pi} \frac{x \sin(30x)}{\sqrt{1 - (\pm)^2}} \, dx.$$
8.1 Program Text

/* nag_ld_quad_gen_1(d01sjc) Example Program

*
*
* Mark 6 revised, 2000.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#include <nagx01.h>

static double f(double x, Nag_User *comm);

main()
{
 double a, b;
 double epsabs, abseps, result, abseps;
 Nag_QuadProgress qp;
 Integer max_num_subint;
 static NagError fail;
 double pi = X01AAC;
 Nag_User comm;

 Vprintf("d01sjc Example Program Results\n");
 epsabs = 0.0;
 epsrel = 0.0001;
 a = 0.0;
 b = pi*2.0;
 max_num_subint = 200;
 d01sjc(f, a, b, epsabs, epsrel, max_num_subint, &result, &abseps,
 &qp, &comm, &fail);
 Vprintf("a - lower limit of integration = %10.4f\n", a);
 Vprintf("b - upper limit of integration = %10.4f\n", b);
 Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
 Vprintf("epsrel - relative accuracy requested = %9.2e\n", epsrel);
 if (fail.code != NE_NOERROR)
 Vprintf("%s\n", fail.message);
 if (fail.code != NE_INT_ARG_LT & fail.code != NE_ALLOC_FAIL)
 {
 Vprintf("result - approximation to the integral = %9.5f\n", result);
 Vprintf("abseps - estimate of the absolute error = %9.2e\n", abseps);
 Vprintf("qp.fun_count - number of function evaluations = %4ld\n", qp.fun_count);
 Vprintf("qp.num_subint - number of subintervals used = %4ld\n", qp.num_subint);
 } /* Free memory used by qp */
 NAG_FREE(qp.sub_int_beg_pts);
 NAG_FREE(qp.sub_int_end_pts);
 NAG_FREE(qp.sub_int_result);
 NAG_FREE(qp.sub_int_error);
 exit(EXIT_SUCCESS);
}
else
 exit(EXIT_FAILURE);
}

static double f(double x, Nag_User *comm)
{
 double pi = X01AAC;
 return (x*sin(x*30.0)/sqrt(1.0-x*x/(pi*pi*4.0)));
}

8.2 Program Data

None.

8.3 Program Results

d01sjc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = 6.2832
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = -2.54326
abserr - estimate of the absolute error = 1.28e-05
qp.fun_count - number of function evaluations = 777
qp.num_subint - number of subintervals used = 19