Chapter c06 – Fourier Transforms

1. Scope of the Chapter

This chapter provides C functions for a variety of computations involving Fourier transforms. All the functions use some form of the FFT algorithm.

2. Background

2.1. Complex Transforms

The discrete Fourier transform (DFT) of a sequence of \(n \) complex numbers \(z_0, z_1, \ldots, z_{n-1} \), is defined by:

\[
\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \exp \left(-i \frac{2\pi jk}{n} \right)
\]

for \(k = 0, 1, \ldots, n - 1 \). Note that equation (1) makes sense for all integer \(k \) and with this extension \(\hat{z}_k \) is periodic with period \(n \), i.e., \(\hat{z}_k = \hat{z}_{k+n} \), and in particular \(\hat{z}_{-k} = \hat{z}_{n-k} \).

The original data values \(z_j \) may conversely be recovered from the transform \(\hat{z}_k \) by an inverse discrete Fourier transform:

\[
z_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \hat{z}_k \exp \left(+i \frac{2\pi jk}{n} \right)
\]

for \(j = 0, 1, \ldots, n - 1 \). If we take the complex conjugate of (2), we find that the sequence \(\bar{z}_j \) is the DFT of the sequence \(\bar{\hat{z}}_k \). Hence the inverse DFT of the sequence \(\hat{z}_k \) may be obtained by taking the complex conjugates of the \(\hat{z}_k \), performing a DFT, and taking the complex conjugates of the result.

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the DFT, and (1) as the definition of the inverse. Also the scale-factor of \(1/\sqrt{n} \) may be omitted in the definition of the DFT, and replaced by \(1/n \) in the definition of the inverse.

If we write \(z_j = x_j + iy_j \) and \(\hat{z}_k = a_k + ib_k \), then the definition of \(\hat{z}_k \) may be written in terms of sines and cosines as:

\[
a_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \cos \left(\frac{2\pi jk}{n} \right) + y_j \sin \left(\frac{2\pi jk}{n} \right)
\]

\[
b_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} y_j \cos \left(\frac{2\pi jk}{n} \right) - x_j \sin \left(\frac{2\pi jk}{n} \right)
\]

\[\text{nag fft complex (c06ecc) computes a single transform as defined in (1); it may be used in conjunction with nag conjugate complex (c06gcc) to compute an inverse transform as defined in (2). See Section 2.4 for functions which compute multiple transforms.}\]

2.2. Real Transforms

If the original sequence is purely real valued, i.e., \(z_j = x_j \), then

\[
\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp \left(-i \frac{2\pi jk}{n} \right)
\]

and \(\hat{z}_{n-k} \) is the complex conjugate of \(\hat{z}_k \). Thus the DFT of a real sequence is a particular type of complex sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the properties:

\[
a_{n-k} = a_k \quad b_{n-k} = -b_k \quad b_0 = 0
\]
and, if \(n \) is even, \(b_{n/2} = 0 \). Thus a Hermitian sequence of \(n \) complex data values can be represented by only \(n \), rather than \(2n \), independent real values. This fact is exploited by the functions in this chapter, in order to economize in storage and computation time.

The following storage scheme is used in this chapter: the real parts \(a_k \) for \(0 \leq k \leq n/2 \) are stored in normal order in the first \(n/2 + 1 \) locations of an array \(x \) of length \(n \); the corresponding non-zero imaginary parts are stored in reverse order in the remaining locations of \(x \). In other words, the real and imaginary parts of \(\hat{z}_k \) are stored as follows:

\[
\begin{array}{c|cc|c}
\text{x[0]} & a_0 & a_0 & \\
\text{x[1]} & a_1 & a_1 & \\
\text{x[2]} & a_2 & a_2 & \\
\vdots & \vdots & \vdots & \\
\text{x[\(s-1\)]} & a_{s-1} & a_{s-1} & \\
\text{x[\(s\)]} & a_s & b_{s-1} & \\
\text{x[\(s+1\)]} & b_{s-1} & b_{s-2} & \\
\vdots & \vdots & \vdots & \\
\text{x[\(n-2\)]} & b_2 & b_2 & \\
\text{x[\(n-1\)]} & b_1 & b_1 & \\
\end{array}
\]

\(\text{nag_multiple_hermitian_to_complex (c06gsc)} \) can be used to convert one or more Hermitian sequences from this compact storage scheme to a representation which uses two arrays of length \(n \) to store the real and imaginary parts of the full complex sequence.

From the definition of the inverse transform, we can deduce:

\[
x_j = \frac{1}{\sqrt{n}} \left(a_0 + 2 \sum_{k=0}^{n/2-1} \left(a_k \cos \left(\frac{2\pi j k}{n} \right) - b_k \sin \left(\frac{2\pi j k}{n} \right) \right) + a_{n/2} \right)
\]

where \(a_{n/2} = 0 \) if \(n \) is odd.

\(\text{nag_fft_real (c06eac)} \) computes a single transform of a real sequence as defined in (3); \(\text{nag_fft_hermitian (c06ebc)} \) computes an analogous transform of a Hermitian sequence, for which the result is a purely real sequence. These functions can be used in conjunction with \(\text{nag_conjugate_hermitian (c06gbc)} \) to compute inverse transforms derived from (2). See Section 2.4 for functions which compute multiple transforms.

2.3. Real Symmetric Transforms

In many applications the sequence \(x_j \) will not only be real, but may also possess additional symmetries which we may exploit to reduce further the computing time and storage requirements.

For example, if the sequence \(x_j \) is odd \((x_j = -x_{n-j}) \), then the discrete Fourier transform of \(x_j \) contains only sine terms. Rather than compute the transform of an odd sequence, we define the \textit{sine transform} of a real sequence by

\[
\hat{x}_k = \sqrt{\frac{2}{n}} \sum_{j=1}^{n-1} x_j \sin \left(\frac{\pi j k}{n} \right)
\]

which could have been computed using the Fourier transform of a real odd sequence of length \(2n \). In this case the \(x_j \) are arbitrary, and the symmetry only becomes apparent when the sequence is extended.

Similarly we define the \textit{cosine transform} of a real sequence by

\[
\hat{x}_k = \sqrt{\frac{2}{n}} \left(\frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi j k}{n} \right) + \frac{1}{2} (-1)^k x_n \right)
\]

which could have been computed using the Fourier transform of a real even sequence of length \(2n \).
In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-wave’ symmetries. We define the quarter-wave sine transform by

\[\hat{x}_k = \frac{1}{\sqrt{n}} \left(\frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi j(2k-1)}{2n} \right) \right) \]

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

\((0, x_1, \ldots, x_{n-1}, x_n, x_{n-1}, \ldots, x_1, 0, -x_1, \ldots, -x_{n-1}, -x_n, -x_{n-1}, \ldots, -x_1)\).

Similarly we may define the quarter-wave cosine transform by

\[\hat{x}_k = \frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n-1} x_j \sin \left(\frac{\pi j(2k-1)}{2n} \right) \right) \]

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

\((x_0, x_1, \ldots, x_{n-1}, 0, -x_{n-1}, \ldots, -x_1, -x_0, -x_1, \ldots, -x_{n-1}, 0, x_{n-1}, \ldots, x_1)\).

2.4. Multiple Transforms

In many applications one needs to compute Fourier transforms of several sequences, all of the same length. NAG C Library functions are provided for this type of application:

- `nag_fft_multiple_complex (c06frc)` for complex transforms
- `nag_fft_multiple_real (c06fpc)` for real-to-Hermitian transforms
- `nag_fft_multiple_hermitian (c06fqc)` for Hermitian-to-real transforms
- `nag_fft_multiple_sine (c06hac)` for sine transforms
- `nag_fft_multiple_cosine (c06hbc)` for cosine transforms
- `nag_fft_multiple_qtr_sine (c06hcc)` for quarter-wave sine transforms
- `nag_fft_multiple_qtr_cosine (c06hdc)` for quarter-wave cosine transforms

These functions must all be preceded by a call to `nag_fft_init_trig (c06gzc)` to compute the trigonometric function values which will be needed. The functions for multiple transforms are likely to be faster than making repeated calls to the functions for single transforms, but they require more workspace.

2.5. Two-dimensional Transforms

- `nag_fft_2d_complex (c06fuc)` computes the two-dimensional generalization of (1) defined by:

\[z_{k_1k_2} = \frac{1}{\sqrt{n_1n_2}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} z_{j_1j_2} \exp \left(-2\pi i \left(\frac{j_1k_1}{n_1} + \frac{j_2k_2}{n_2} \right) \right) \]

for \(k_1 = 0, 1, \ldots, n_1 - 1; k_2 = 0, 1, \ldots, n_2 - 1\).

2.6. Convolutions and Correlations

One of the most important applications of the discrete Fourier transform is to the efficient computation of the discrete convolution or correlation of two vectors \(x\) and \(y\) defined by:

\[z_k = \sum_{j=0}^{n-1} \hat{x}_j y_{k-j} \]
correlation: \[w_k = \sum_{j=0}^{n-1} \bar{x}_j y_{k+j} \]

Here \(x \) and \(y \) are assumed to be periodic with period \(n \). These computations are performed by nag.convolution.real (c06ekc), for real vectors \(x \) and \(y \).

3. Available Functions

3.1. Fourier Transforms

- Single complex transform (c06ecc)
- Single real-to-Hermitian transform (c06eac)
- Single Hermitian-to-real transform (c06ebc)
- Multiple complex transforms (c06frc)
- Multiple real-to-Hermitian transforms (c06fpc)
- Multiple Hermitian-to-real transforms (c06fqc)
- Multiple cosine transforms (c06hbc)
- Multiple sine transforms (c06hac)
- Multiple quarter-wave cosine transforms (c06hdc)
- Multiple quarter-wave sine transforms (c06hcc)
- Two-dimensional complex transform (c06fuc)

3.2. Convolution and Correlation

- Convolution or correlation of two real vectors (c06ekc)

3.3. Utility Routines

- Form conjugate of single Hermitian sequence (c06gbc)
- Form conjugate of multiple Hermitian sequences (c06gqc)
- Form conjugate of single or multiple complex sequences (c06gcc)
- Convert single or multiple Hermitian sequences to complex (c06gsc)
- Compute trigonometric function values (c06gzc)