DSBGVX Example

To find the eigenvalues in the half-open interval $ \left(\vphantom{0.0, 1.0}\right.$0.0, 1.0$ \left.\vphantom{0.0, 1.0}\right]$, and corresponding eigenvectors, of the generalized band symmetric eigenproblem Ax = $ \lambda$Bx, where

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
0.24 & 0.39 & 0.42 & 0 \\ ...
... 0.42 & 0.79 & -0.25 & 0.48 \\
0 & 0.63 & 0.48 & -0.03
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
0.24 & 0.39 & 0.42 & 0 \\
0.39 & -0.11 & ...
....63 \\
0.42 & 0.79 & -0.25 & 0.48 \\
0 & 0.63 & 0.48 & -0.03
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
0.24 & 0.39 & 0.42 & 0 \\ ...
... 0.42 & 0.79 & -0.25 & 0.48 \\
0 & 0.63 & 0.48 & -0.03
\end{array} }\right)$   and  B = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
2.07 & 0.95 & 0 & 0 \\
...
...\\
0 & -0.29 & 0.65 & -0.33 \\
0 & 0 & -0.33 & 1.17
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
2.07 & 0.95 & 0 & 0 \\
0.95 & 1.69 & -0.29 & 0 \\
0 & -0.29 & 0.65 & -0.33 \\
0 & 0 & -0.33 & 1.17
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
2.07 & 0.95 & 0 & 0 \\
...
...\\
0 & -0.29 & 0.65 & -0.33 \\
0 & 0 & -0.33 & 1.17
\end{array} }\right)$.

Example program
Example data
Example results