DGEESX Example

To find the Schur factorization of the matrix

A = $\displaystyle \left(\vphantom{
\begin{array}{rrrr}
0.35 & 0.45 & -0.14 & -0.1...
... & -0.33 & -0.03 & 0.17 \\
0.25 & -0.32 & -0.13 & 0.11
\end{array} }\right.$$\displaystyle \begin{array}{rrrr}
0.35 & 0.45 & -0.14 & -0.17 \\
0.09 & 0.0...
...
-0.44 & -0.33 & -0.03 & 0.17 \\
0.25 & -0.32 & -0.13 & 0.11
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{rrrr}
0.35 & 0.45 & -0.14 & -0.1...
... & -0.33 & -0.03 & 0.17 \\
0.25 & -0.32 & -0.13 & 0.11
\end{array} }\right)$,

such that the real eigenvalues of A are the top left diagonal elements of the Schur form, T. Estimates of the condition numbers for the selected eigenvalue cluster and corresponding invariant subspace are also returned.

Example program
Example data
Example results