
Using the NAG Library for Python with Kdb+
and PyQ

Christopher Brandt, Numerical Algorithms Group Inc.

1 Background

This paper provides detailed instructions on how to use the NAG Library
for Python with kdb+ and PyQ. The NAG Library contains more than 1,800
mathematical and statistical routines, and is accessible by numerous programming
languages (including Python, C++, Java, Fortran, etc.). PyQ is an extension to
kdb+ featuring zero-copy sharing of data between Python and the q programming
language. The enclosed examples will illustrate how to access routines within
the NAG Library for Python using data stored in kdb+.

2 Setting Up the Workspace

Installation for both the NAG Library for Python and the PyQ extension to
kdb+ may be performed using pip.

To install the NAG Library for Python:

$ python -m pip install --extra-index-url
https:nag/com/downloads/py/naginterfaces_nag naginterfaces

The PyQ package is developed by Kx Systems, the developers of kdb+. To
install it:

$ python -m pip install pyq

Both the NAG Library for Python and kdb+ are commercial software packages
that require active licenses for their respective usage. To obtain a temporary
license for the NAG Library for Python, please contact NAG support at support@
nag.com.

3 Examples

The following three examples demonstrate how to call the NAG Library for
Python routines using kdb+ and PyQ. These examples were carefully selected,
as they cover techniques found in the majority of usage cases a customer will
encounter across all 1,800+ routines within the Library. If your usage case falls
outside of these three examples, please contact NAG support for assistance.

1

https://www.nag.com/numeric/py/nagdoc_latest/index.html
https://www.nag.com/numeric/py/nagdoc_latest/index.html
https://code.kx.com/v2/
https://code.kx.com/q/interfaces/pyq/
https://kx.com/
mailto:support@nag.com
mailto:support@nag.com
mailto:support@nag.com


3.1 Example One: BLAS Routine DAXPY

Our first example demonstrates how to perform the linear algebra operation

y := αx+ b.

Below is the NAG Library for Python signature for this routine.

naginterfaces.library.blas.daxpy(alpha,x,y)

Parameters: alpha: float
x: float, array-like, shape(n)
y: float, array-like, shape(n)

Returns: y: float, ndarray, shape(n)

Within our terminal, we begin by initiating a PyQ interactive session.

$ pyq

Next, we import PyQ and the BLAS module of the NAG Library for Python.

>>> from pyq import q
>>> from naginterfaces.library import blas

We then enter a q environment and define our parameters as q objects.

>>> q()
q) alpha:0.5f
q) x:4#2 2 2 2f
q) y:4#4 4 4 4f

Finally, we exit the q environment and invoke the NAG routine.

q) \
>>> z = blas.daxpy(float(q.alpha), q.x, q.y)
>>> z # display solution: array([4., 4., 4., 4.])

3.2 Example Two: Nearest Correlation Matrix

Our second example employs a nearest correlation matrix routine which, for a
given approximate correlation matrix G, computes the nearest correlation matrix
X by minimizing the weighted Frobenius norm

∥∥∥W 1/2(G−X)W 1/2
∥∥∥2

F

where W is a diagonal matrix of weights.

The NAG Library for Python signature for this routine is below.

2



naginterfaces.library.correg.corrmat_nearest_bounded(
g,opt,alpha=None,w=None,errtol=0.0,maxits=0,maxit=200)

Parameters: g: float, array-like, shape(n,n)
opt: str, length 1
alpha: None or float, optional
w: None or float, array-like, shape(n), optional
errtol: float, optional
maxits: int, optional
maxit: int, optional

Returns: x: float, ndarray, shape(n,n)
itera: int
feval: int
nrmgrd: float

Within our interactive PyQ session, we begin by importing the Correlation and
Regression Analysis module of the NAG Library for Python.

>>> from naginterfaces.library import correg

Next, we enter a q environment and define our parameters as q objects.

>>> q()
q) alpha:0.5f
q) x:4#2 2 2 2f
q) g:4 4#2 -1 0 0 -1 2 -1 0 0 -1 2 -1 0 0 -1 2f
q) opt:”B”
q) alpha:0.02f
q) w:4#100 20 20 20f

We then exit the q environment and invoke the NAG routine.

q) \
>>> x, feval, itera, nrmgrd = correg.corrmat_nearest_bounded(

q.g, str(q.opt), float(q.alpha), q.w)
>>> x # display solution

3.3 Example Three: Numerical Integration

With our final example, we demonstrate how to incorporate a user-defined
callback function with a NAG Library for Python routine. This example approx-
imates the definite integral

∫ b

a

f(x)dx.

The NAG Library for Python signature for this routine is below.

3



naginterfaces.library.quad.dim1_fin_smooth(f,a,b,epsabs,epsrel,data=None)

Parameters: f: callable, result = f(x,data=None)
Parameters:

x: float
data: arbitrary, optional, modifiable in place

a: float
b: float
epsabs: float
epsrel: float
data: arbitrary, optional

Returns: result: float
abserr: float

We start by importing the Quadrature module of the NAG Library for Python.

>>> from naginterfaces.library import quad

Next, we enter a q environment and define our parameters as q objects.

>>> q()
q) a:0f
q) b:2f
q) epsabs:0f
q) epsrel:0.0001f

We then exit the q environment and define an integrable Python function.
To satisfy this parameter we may use either a Python function or a lambda
expression.

q) \
>>> def f(x):

return x*x
...

With our problem now fully defined, we invoke the NAG routine to compute our
solution.

>>> result, error = quad.dim1_fin_smooth(
f, float(q.a), float(q.b), float(q.epsabs), float(q.epsrel))

>>> result # 2.6666666666666667
>>> error # 1.4802973661668755e-14

4 Additional Usage Cases

NAG recently published the technical report Using the NAG Library with Kdb+
in a Pure Q Environment discussing how to call the NAG Library using the
new Foreign Function Interface (FFI) from Kx. Additionally, the NAG Blog

4

https://www.nag.com/doc/techrep/pdf/tr1_18.pdf
https://www.nag.com/doc/techrep/pdf/tr1_18.pdf
https://code.kx.com/q/interfaces/ffi/


titled Calling the NAG C Library from Kdb+ details how to incorporate the
NAG Library with kdb+ within a C++ program. We speculate that among our
shared clients, a mixture of these methods will be employed.

If your desired usage case happens to fall outside of those described within
our current publications, please contact NAG support at support@nag.com for
assistance with your application.

5 References / Bibliography

(1) Calling the NAG C Library from Kdb+ http://blog.nag.com/2013/05/
calling-nag-c-library-from-kdb.html

(2) Get Going with Kdb+ https://code.kx.com/v2/
(3) Kdb+ and Python: embedPy and PyQ https://kx.com/blog/kdb-python-

embedpy-pyq/
(4) NAG GitHub Organisation https://github.com/numericalalgorithmsgroup/
(5) NAG Library for Python Manual https://www.nag.com/numeric/py/

nagdoc_latest/index.html
(6) Using Foreign Functions with Kdb+ (FFI) https://code.kx.com/q/

interfaces/ffi/
(7) Using Python with kdb+ (PyQ) https://code.kx.com/q/interfaces/pyq/
(8) Using the NAG Library with Kdb+ in a Pure Q Environment https:

//www.nag.com/doc/techrep/pdf/tr1_18.pdf

5

http://blog.nag.com/2013/05/calling-nag-c-library-from-kdb.html
mailto:support@nag.com
http://blog.nag.com/2013/05/calling-nag-c-library-from-kdb.html
http://blog.nag.com/2013/05/calling-nag-c-library-from-kdb.html
https://code.kx.com/v2/
https://kx.com/blog/kdb-python-embedpy-pyq/
https://kx.com/blog/kdb-python-embedpy-pyq/
https://github.com/numericalalgorithmsgroup/
https://www.nag.com/numeric/py/nagdoc_latest/index.html
https://www.nag.com/numeric/py/nagdoc_latest/index.html
https://code.kx.com/q/interfaces/ffi/
https://code.kx.com/q/interfaces/ffi/
https://code.kx.com/q/interfaces/pyq/
https://www.nag.com/doc/techrep/pdf/tr1_18.pdf
https://www.nag.com/doc/techrep/pdf/tr1_18.pdf

	Using the NAG Library for Python with Kdb+ and PyQ
	1 Background
	2 Setting Up the Workspace
	3 Examples
	3.1 Example One: BLAS Routine DAXPY
	3.2 Example Two: Nearest Correlation Matrix
	3.3 Example Three: Numerical Integration

	4 Additional Usage Cases
	5 References / Bibliography


