
A Web Services Architecture for Visualization

Jason Wood, Ken Brodlie,
Jungwook Seo, David Duke

School of Computing, University of Leeds
Leeds LS2 9JT, United Kingdom

{jason, kwb, jungwook, djd}@comp.leeds.ac.uk

Jeremy Walton
The Numerical Algorithms Group (NAG) Ltd

Wilkinson House, Jordan Hill Road
Oxford OX2 8DR, United Kingdom

jeremy.walton@nag.co.uk

Abstract—Service-oriented architectures are increasingly being
used as the architectural style for creating large distributed
computer applications. This paper examines the provision of
visualization as a service that can be made available to
application designers in order to combine with other services.
We develop a three-layer architecture: a client layer which
provides the user interface; a stateful web service middleware
layer which provides a published interface to the visualization
system; and finally, a visualization component layer which
provides the core functionality of visualization techniques.
This separation of middleware from the visualization
components is crucial: it allows us to exploit the strengths of
web service technologies in providing standardized access to
the system, and in maintaining state information throughout a
session, but also gives us the freedom to build our visualization
layer in an efficient and flexible way without the constraints of
web service protocols. We describe the design of a
visualization service based on this architecture, and illustrate
one aspect of the work by re-visiting an early example of web-
based visualization.

Keywords: application design; service-oriented architectures;
software systems; visualization; web services

I.
II.

 INTRODUCTION
Service-oriented architectures are increasingly being used

as the architectural style for creating large computer
applications. The major elements of an application are
packaged as services that can be distributed on different
hosts; these services can be combined in workflows, and re-
used in various ways to create a range of applications, with
data being transferred between services according to the
workflow. The aim of this paper is to examine the position
of visualization software systems within the world of
service-oriented architectures.

Visualization is often just one element of a larger
computing application. For example, numerical simulations
often incorporate a visualization component in order to gain
insight into the results, or to steer the simulation into an
optimum region of its parameter space. In medical
computing, visualization may be combined with database
components to allow individual patient records to be
extracted, and visually explored, compared and assessed. In
the emerging field of visual analytics, visualization needs to
be combined with statistical processing in order to explore
trends, detect anomalies or simply reduce data to a feasible
size.

Our contribution in this paper is the outline of a
visualization web service. We are not concerned with other
services that might be used in a larger application, but focus
simply on a service providing visualization functionality.
We consider issues of granularity: should there be a single
visualization web service, or should the functionality be split
into individual services along the lines of the modular
visualization environments developed in the early 1990s?
We favour the single visualization service, but retain the idea
of modules and dataflow pipelines in a layer beneath the web
service interface. We develop a realization of the
architecture using current web service technologies.

To illustrate the architecture, we return to an example of
air quality visualization that was used in a very early paper
on visualization web services in 1996. There are two reasons
for this: firstly, we can reflect on the limitations of web
technologies at this earlier time, and the way in which
advances in this field allow us to provide a different user
experience today; and secondly, the simplicity of this
example allows us to focus on the novelty of the system
architecture, rather than the visualization itself.

RELATED WORK
Over the past 14 years, there has been a steady evolution

in the use of web technologies for visualization – both client-
side and server-side. In the case of client-side applications,
many visualization applets have been developed, and are
widely used today. For example, the ManyEyes [1] system
allows registered users to upload datasets and select from a
number of pre-defined applets. A Web 2.0 social networking
aspect is added by allowing users to upload their
visualizations, with comments added, to a repository from
where other users can download the visualization, make their
own comments and perhaps make changes. The Google
visualization API [2] allows users to create their own
Javascript visualization applications, and share these with
other users. These client-side applications are typically used
for graphs and charts where the visualization processing is
straightforward.

Our interest is more in server-side approaches where
larger datasets and more complex visualizations can be
handled. An early example of this approach was the work of
Wood et al. [3] in 1996: they demonstrated an air quality
application in which a user selected data of interest using a
web form; a CGI script was invoked to retrieve the data from
a database and run a dataflow visualization system (IRIS

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE

DOI 10.1109/eScience.2008.51

1

Explorer [13]) on a server; and a 3D visualization was
returned in the form of a VRML scene. We use exactly the
same application to demonstrate the web services
architecture proposed in this paper, in order to illustrate the
advances that have appeared in the last twelve years thanks
to the development of modern web service technologies.

The work of Wood et al. was followed by a number of
similar CGI-based server-side applications, which typically
used Java applets rather than HTML forms to provide an
improved user interface [4, 5]. A further step was taken by
Jankun-Kelly et al. [6], who ported their visualization
spreadsheet application to the web using servlets to create
volume rendering, Javascript to provide the interface and
Grid technologies for user authentication and file transfer.
Recently Eick et al. [7] have demonstrated how thin client
visualization applications can be developed by using AJAX
and other web technologies similar to those deployed in
Google maps.

Our aim in this paper is to explore how the dataflow
visualization concept which underlies many popular
commercial visualization systems can be migrated to modern
web service technologies. In dataflow visualization,
elementary processing steps in a visualization pipeline are
provided as a set of modules; users can select the modules
they need to compose a particular visualization, and connect
these modules together in an appropriate network using a
visual editor. The idea of implementing dataflow
visualization as web services was pioneered by Charters et
al. [8] and by Wang et al. [9]. In their work, the modules of
a modular visualization environment become web services.
In Wang’s case, the notification feature of web services was
used to pass the data between the services in the pipeline: the
input port of one service ‘notifies’ the output port of a
connected service. A difficulty of equating modules with
services is that data transfer must be implemented as XML
messages, which involves a considerable overhead. As will
be explained later, in our architecture only the pipeline
management is a web service, while the individual modules
are processes that can communicate using more efficient
protocols.

The VisTrails project [10] allows users to build
visualization pipelines from modules constructed using the
VTK library. The execution control of the pipeline is
handled within the VisTrails interface, but for the web-based
applications with which we are concerned here, we believe it
is preferable to have execution control independent from the
user interface.

There is a growing body of research on workflow,
particularly within the Grid community. Triana [11] is a
workflow-based graphical problem-solving environment that
allows distributed components such as Grid jobs or web
services to be composed using a visual editor. Taverna [12]
provides tools for workflow composition and execution,
particularly for bioinformatics applications. These workflow
systems can be applied to visualization, but typically the
granularity of the workflow components tends to be rather
larger than is appropriate for visualization. Moreover they
often lack the interactivity and ability to ‘plug, play and

throw-away’ that is characteristic of visualization dataflow
programming.

III.

A.

SERVICE-ORIENTED ARCHITECTURES FOR
VISUALIZATION

Service-oriented architectures offer a new paradigm for
the construction of distributed applications. Here, the
application designer orchestrates published computing
components (services) into a workflow to fulfill a specific
requirement. To support this design, services provide
published interfaces using the Web Services Description
Language (WSDL) that describe the functions they offer and
the data types they require and provide. This approach
allows for the re-use of components for the construction of
sophisticated applications.

This paradigm shows clear parallels with the
visualization dataflow reference model. However, as
mentioned in the previous section, the simple approach of
implementing each module in a dataflow pipeline as a web
service has limitations of performance and reliability. Our
approach seeks to avoid these limitations whilst retaining the
benefit provided by the standard open interface of web
services. We essentially provide visualization as a service as
opposed to providing a set of visualization services.

Our architecture can be viewed as a simple three-layer
model (Fig. 1) where the client communicates with the web
services layer using standard web service calls, but the web
services layer communicates with a lower layer of
visualization components using a proprietary
communications mechanism. This approach gives us one of
the benefits of web services, namely a published interface
allowing anyone to access the provided services, but allows
us to implement the visualization components in a more
efficient way.

Visualization Components Layer
The visualization components layer contains the

computation and data associated with the visualization
pipeline. The elements that constitute this layer could be
implemented as re-useable modules that use socket
communication to share data between them in a similar way
to web services, but the data can be passed without the

Client / User Interface

Web Services Middleware

Visualization Components

Web service calls

Proprietary communications

Figure 1. Basic architecture.

2

overhead of converting it into an intermediate form such as
XML or base64 encoded binary (which would be required if
web services were being used for this layer). Alternatively,
for processes that are running on the same machine, data can
be passed via shared memory. Here, a reference to a data
object is passed between processes without copying the data,
thus reducing the memory footprint of the visualization
process. Since visualization typically involves large sets of
data, this efficiency saving can be extremely important. If a
compute cluster were provided as the hardware system on
which to execute the visualization processes, then it would
be possible to run parallel visualization components that
communicate through MPI.

B.

C.

IV.

A.

B.

Web Services Middleware Layer
There are two current models for web services, stateless

and stateful. As its name suggests, a stateless service
performs a task for a given set of input data and retains no
information that can be used in a subsequent call to the same
service. By contrast, a stateful service allows data generated
by a call to that service to be retained and used in subsequent
calls to that service. In this case, the calling client uses a
unique reference to the service to identify the previous
instance of the service.

While stateless services provide an elegant simplicity of
design, an architecture for a visualization service constructed
using them would be inefficient because any request for the
results of a given pipeline would require complete re-
execution (in the absence of any cached results from
previous executions). Using stateful services in this
architecture, the client is able to establish and re-use a
visualization pipeline by interacting with the same
visualization service instance over a period of time. When a
new result is required, previously cached data can be used to
shortcut the re-execution of the whole pipeline.

The web services middleware layer provides the glue
between the client / user interface layer and the visualization
components layer. It offers a standard interface to the
visualization pipeline implemented within the visualization
components layer. It provides methods for all the basic tasks
associated with constructing and interacting with
visualization pipelines (e.g. start/stop pipeline component,
connect/disconnect pipeline component, set parameter value
for pipeline component etc.) as well as being able to load and
save visualization pipeline descriptions from/to a file. The
middleware layer maintains a model of the visualization
pipeline associated with a particular service instance, and is
responsible for starting processes in the visualization
components layer in response to requests from the client
layer, as well as routing interaction requests from the client
(e.g. set a parameter value) to the appropriate underlying
visualization component.

Client / User Interface Layer
Our three-layer architecture cleanly separates the user

interface from the middleware and the visualization
components. This facilitates the development of a range of
different interfaces which use the visualization service as the
engine to generate the visualization result. For example, a

simple interactive visualization application could be
delivered over the web using a web browser as a user
interface (see section 5). Alternatively, visualization could
be part of a larger application; in this case visualization could
be incorporated by using web services to access one or more
predefined visualization pipelines. Data would be passed to
the service and a visualized result returned for display within
the application. While these two examples deal with
potentially static pipeline descriptions, there is no reason
why an application could not be constructed that allowed the
dynamic construction of a network of visualization
processes. The user could then interact with these processes
in the same way that modules are used in a conventional
dataflow visualization toolkit [13], changing parameters and
connections to effect new visualization results. Unlike these
toolkits, however, the user can create an alternative interface
without having to abandon the visualization functionality
provided.

REALIZATION OF THE ARCHITECTURE

Visualization Components Layer
We have chosen to implement the dataflow model as the

realization of the visualization components layer since it
complements the web services paradigm. We have taken
existing module code from IRIS Explorer [13] and have
replaced its existing framework and GUI with a new
environment in which these modules can function. It
currently provides a mechanism for allowing modules to
make connections to each other at the request of some
external agent (in our case the web services middleware),
and for the setting of parameter values. It reuses IRIS
Explorer’s socket communications library for passing data
between modules: much of the existing IRIS Explorer
module API has been ported to the new environment as well.
Taking this approach has provided us with a large set of
ready-made visualization functionality. New modules can
still be written (using, for example, other visualization
libraries such as VTK [14]) and added to the system to
extend its functionality.

While using socket communications means that data is
copied and passed between processes much as with standard
web services, using the native communications library
allows data objects to be traversed and transmitted without
needing to be re-packaged and then subsequently unpacked
on arrival. This gives us efficiency improvements over web
services.

The new environment, in addition to providing
functionality for modules to execute and communicate, also
incorporates a firing algorithm that enables modules to
decide for themselves when to execute (e.g. when new data
is passed to them).

Web Services Middleware Layer
The web services middleware layer is realized using the

Web Service Resource Framework (WSRF) [15] for stateful
and transient web services and WS-Notification [16] for
event delivery. It is implemented using the Globus Toolkit 4
Core [17] and the Apache Tomcat Server [18]. WSRF has

3

recently emerged from the collaborative efforts of the Web
Service and Grid Computing communities, and includes a
number of XML-based specifications. Those that we have
employed in this work include WS-ResourceLifetime [19],
WS-ResourceProperty [20], and WS-ServiceGroup [21].
The main aim of WSRF is to separate stateful entities such as
the Resource Home and WS-Resource from web services by
employing WS-Addressing [22]. Clients access a specific
WS-Resource using its End Point Reference (EPR) which
contains the resource key. The communication between
clients and the visualization service is implemented using
Simple Object Access Protocol (SOAP) binding stubs [23].
The visualization service is implemented by running a
stateful web service – called Pipeline_Builder_Service –
within a Tomcat server. This service currently provides a
collection of methods to manipulate pipelines, such as
CreateMap, StartModule, MakeConnection,
SetParameter and so on, as shown in Fig. 2.

Clients interact with Pipeline_Builder_Service by
invoking the CreateMap method to create a WS-
MapResource for which they receive a unique EPR. The
WS-MapResource created in the Resource Home contains a
model of the visualization pipeline implemented as a set of
Java objects. These objects are responsible for starting and
stopping modules in the underlying visualization
components layer at the request of the client, and for
maintaining two-way communications to exchange
information with the other layers. The client makes
subsequent calls to its WS-MapResource, identified by the
EPR, to start and stop modules, make and break connections,
set parameters of modules within the pipeline or to save the
pipeline description to a file. These requests modify the
model of the visualization pipeline held in the WS-
MapResource which forwards any required change to the
underlying visualization modules.

In addition to the service methods that allow manual
construction of a visualization pipeline, clients can load a
previously constructed pipeline from a file. The XML file
format used is based on the extended skML format described
in [24] with some further additions allowing the
identification of visualization results. WSRF allows the
lifetime of a resource to be set independently of whether a
client is connected, which allows clients to create long-
running visualization jobs that can be interacted with over a
period of time. So long as the EPR of the WS-MapResource
is maintained, the client can check in and out to monitor
progress.

C. Client / User Interface Layer
Our architecture provides for an open interface to the

web services layer, which allows for the creation of a variety
of user interfaces. To date, two different styles of interface
have been developed and tested. First, a prototype graphical
user interface designed to operate in the manner of a
traditional dataflow environment has been constructed. It
offers the basic operations of starting, stopping and
connecting visualization components by dragging and
dropping graphical representations of modules and wires
onto a workspace. When first started, a module list is
retrieved from Pipeline_Builder_Service and displayed on
the left hand side of the interface. The user launches a
module by dropping it onto the workspace, at which point
the interface receives a list of input / output ports with data
types and a list of parameters with initial values which are
used to populate the user interface. This approach allows for
the independent development of the server component of the
system, adding new modules or modifying existing ones and
delivering updates to users at runtime without requiring them
to re-install the client. Once a pipeline is constructed and
executing, geometry is delivered to the client’s desktop for
viewing. Fig. 3 shows an example of this interface, as
implemented in the .NET Framework.

Figure 2. Visualization middleware layer.

Second, an interface using a web browser has been

Figure 3. Prototype user interface, showing a pipeline generating an
isosurface from volume data, displayed in a VRML viewer.

4

developed and is used as part of the demonstrator in section
5. For this we have split the client into two parts: the first
part is simple HTML that appears in a user’s browser and
which provides them with a constrained set of visualization
options, while the second part is the session manager, which
is hosted on a separate Tomcat server [18]. This is accessed
across the network and converts simple requests from the
browser into web service calls that are directed to the
middleware layer.

This session manager (see Fig. 4) is implemented using
three technologies, namely Java Server Pages (JSP), Java
Server Faces (JSF) and Java managed beans, in order to store
data and efficiently interact with both clients and the
visualization service. JSF provides standard, reusable
components for creating user interfaces as web applications,
encapsulating the event handling and component rendering
logic. The components in the user interface are capable of
interacting with a number of managed beans such as a
Session Bean and a Request Bean to store and retrieve data.
The managed beans can be set up with three different levels
of scope: Application, Session and Request. Application
scope is for all clients as long as the web application is
running, Session scope is for each client and Request scope
is for each request from a client between web pages.

V. REWORKING AN EARLY WEB-BASED VISUALIZATION
In a previous paper Wood et al. [3] described an

implementation of a server side web-based visualization
system that used IRIS Explorer. This system was
demonstrated using an example visualization application that
delivered visualized results for air quality data. The user was
able to select a set of data based on a combination of location
and chemical pollutant over a selected time period. In
addition, a set of visualization options was chosen before the
request was submitted. The visualization was delivered in
the form of a VRML file that could be inspected on the
user’s desktop.

The server side implementation used the IRIS Explorer
desktop visualization tool to realize the visualization service.
In practice, a copy of IRIS Explorer was running at all times
with the visualization pipeline active. When a user made a
request, the data file was prepared, and then the user’s
parameters were passed to the pipeline by communicating
with a special module through a socket connection. The
pipeline executed and created the VRML output, flagging its
completion through the use of a lock file. Any subsequent
request by that user – for example, switching visualization
type – required a complete re-execution of the process. No
re-use of any previous data in the pipeline was possible. In
this way it is similar to what we would think of today as a
stateless web service.

This demonstrator has been re-worked using the
implementation of our new architecture. To the viewer, the
system appears as before, with the same data and
visualization options being offered, and with VRML being
returned. The changes are all in the backend systems.

When users open the User Interface page in a web
browser, a new session is started for each client. Users are
able to not only send requests for a data set from a particular

location during a certain time period, but also set options in
the visualization pipeline. Upon receiving the first request,
the session manager creates a ‘map manager’ object, which
is responsible for interacting with the visualization service,
hosted in a separate Tomcat server, as shown in Fig. 5. A
‘data driver’ object is created to obtain the data set from the
air quality data server [25]. Once the requested data has
been accessed, the map manager invokes the visualization
service to create a WS-MapResource for a pipeline on behalf
of the client. The Resource Home creates a WS-
MapResource and returns its EPR to the map manager,
which can then manipulate it using methods such as
LoadMap, MakeConnection, BreakConnection and
SetParameter. The map manager requests the
appropriate map to be loaded and sends then the input data
stored by the data driver to the WS-MapResource as a URL
using the SetParameter method. The data is passed
through the pipeline to generate a VRML file, whose
location (in the form of a URL) is stored in a data server and
passed to the Request Bean through the map manager. After
the map has been executed, the results page retrieves this
location from the Request Bean and displays the scene in a
VRML viewer in the client’s browser.

Once the initial pipeline is loaded, the client can
continually interact with the stateful web service through the
map manager without creating a new pipeline. Whenever
the client sends a request, the map manager can interact with
the WS-MapResource, which contains all the stateful
objects. For instance, when the client changes a parameter
value that affects a module delivering the visualization
output, the map manager simply uses the SetParameter
method to change the option in the existing pipeline. The

Figure 4. Session manager for web-based visualization client.

5

system is able to determine which elements of the previous
execution can be re-used and only those parts of the pipeline
that need updating are executed to generate a new
visualization. Fig. 6 shows an example where the user has
selected two sites and two pollutants and initially chosen to
view them as a surface. The surface is displayed in a new
page using a VRML viewer. This page also provides
controls to change the visualization type to a 2D histogram;
selecting this option takes the viewer to the third page shown
in the figure.

Once the user stops interacting with the web browser, the
expiry of the time limit associated with the Session Bean in
the session manager forces the map manager to destroy the
WS-MapResource in the visualization service. In this way,
clients are able to run a stateful web service, which has a
lifetime associated with it.

In our architecture, notifications are implemented in
accordance with the WS-ResourceProperties and WS-
Notification specifications. Clients asynchronously receive
notifications for both parameter values calculated in the
visualization layer (such as data range) and also the firing
status from each module process in order to effectively
interact with the WS-MapResource. Each module
automatically notifies the middleware of the changed
parameter value and the middleware then updates it as a WS-
Topic. The user interface receives the changed value and
updates it. Alternatively, clients are capable of selecting a
number of pipeline properties, subscribing to each WS-Topic
with the EPR. For example, clients can subscribe to the
status of the whole pipeline.

We note that our web service can be entered into the
Universal Description, Discovery and Integration (UDDI)
registry, enabling other users to discover and interact with it,
by making use of the published WSDL interface. This can
be done on a variety of platforms and languages (for
example, the Windows .NET client, as shown in Fig. 3). In
addition, instances of WS-MapResources created by other
users can be found and monitored by the Monitoring and

Discovery Service [26] within the GT4 using WS-
ServiceGroup and WS-Notification.

Figure 6. Visualization of air quality data showing data selection
page (top) surface view (middle) and histogram view (bottom).

In the original 1996 implementation, each visualization
request required the creation and execution of the pipeline
from scratch (14 modules, 19 connections) – even when only
a small parameter change was involved. By contrast, our
new implementation only involves this cost for the first
request; by using stateful web services, on subsequent
requests involving parameter changes, the pipeline is re-used
and only two modules need to be re-executed.

Figure 5. Architecture for air quality web service.

VI. CONCLUSIONS
We have presented an architecture for a visualization

system using web services technologies and demonstrated its
use for developing web-based visualization applications.
Using a web services middleware layer allows us to present a
published web services front-end to client applications, while
still giving us the opportunity to develop an efficient
visualization engine underneath. Additionally, using stateful
services for the middleware layer gives us the ability to
perform a sequence of interactions over time with the same
visualization pipeline and hence gain the benefit of re-using
cached data.

Rather than presenting a set of visualization services,
where each individual visualization component is a service,
we have considered the problem at a coarser level of
granularity and offered visualization as a service. We

6

maintain the workflow paradigm used by the application
designer by allowing the visualization service to be
configured using a dataflow pipeline (workflow) description.

ACKNOWLEDGMENT
This work was carried out within the ADVISE project

funded by the Technology Strategy Board of the UK
Department for Innovation, Universities and Skills; partners
in the project are NAG Ltd, VSNi Ltd and the University of
Leeds. Thanks to Roger Payne and Ian Channing of VSNi
for helpful discussions, and to Haoxiang Wang who laid the
foundations for this work during his PhD project at Leeds.

REFERENCES
[1] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss and M. McKeon,

“Many Eyes: a site for visualization at internet scale,” IEEE
Transactions on Visualization and Computer Graphics, Vol 13, No 6,
pp. 1121–1128, 2007.

[2] Google Visualization API. http://code.google.com/apis/visualization/
[3] J. D. Wood, K. W. Brodlie and H. Wright, “Visualization over the

world wide web and its application to environmental data,”
Proceedings of IEEE Visualization96 conference, R. Yagel and G. M.
Nielson, Eds. pp. 81–86, ACM Press, 1996.

[4] M. Bender, R. Klein, A. Disch and A. Ebert, “A functional
framework for web-based information visualization systems,” TVCG,
6(1), pp. 8–23, January-March 2000.

[5] R. M. Rohrer and E. Swing, “Web-based information visualization,”
IEEE Computer Graphics and Applications, 17(4), pp. 52–59,
July/August 1997.

[6] T. J. Jankun-Kelly, O. Kreylos, J. M. Shalf, K.-L. Ma, B. Hamann, K.
I. Joy, and E. W. Bethel, “Deploying web-based visual exploration
tools on the grid,” IEEE CG&A, 23(2), pp. 40–50, 2003.

[7] S. G. Eick, M. A. Eick, J. Fugitt, B. Horst, M. Khailo, and R. A.
Lankenau, “Thin client visualization,” in VAST07, pp. 51–58, 2007.

[8] S. Charters, N. Holliman, M. Munro, “Visualization on the Grid: a
web service approach,” in Proceedings of the UK e-Science All
Hands Meeting 2004, pp. 202–209.

[9] H. Wang, K. Brodlie, J. Handley and J. Wood, “Service-oriented
approach to collaborative visualization”, Concurrency and
Computation: Practice and Experience, 20, pp. 1289–1301, 2008.

[10] C. T. Silva, J. Freire and S. T. Callahan, “Provenance for
visualizations,” IEEE Computing in Science and Engineering, 9 (5),
pp. 82–89, 2007.

[11] I. Taylor, M. Shields, I. Wang and A. Harrison, “Visual grid
workflow in Triana,” Journal of Grid Computing, 3, pp. 153–169,
2007.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver,
A. Wijpat and P. Li, “Taverna: a tool for the composition and
enactment of bioinformatics workflows,” Bioinformatics Journal, 20
(17), pp. 3045–3054, 2004.

[13] J.P.R.B. Walton, “NAG’s IRIS Explorer”, in The Visualization
Handbook, C. D. Hansen and C. R. Johnson, Eds. pp. 633–654.
Elsevier, 2005.

[14] W. J. Schroeder, K. M. Martin, W. E. Lorensen, “The design and
implementation of an object-oriented toolkit for 3D graphics and
visualization,” Proceedings of IEEE Visualization96 conference, R.
Yagel and G. M. Nielson, Eds. pp. 93–100, ACM Press, 1996.

[15] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, I.
Sedukhin, D. Snelling, S. Tuecke and W. Vambenepe, “The WS-
resource framework,” http://www.globus.org/wsrf/specs/ws-wsrf.pdf,
2004.

[16] S. Graham et al., “WS-Notification family of specifications (WS-
BaseNotification, WS-Topics and WSBrokeredNotification)”, 2004.

[17] Globus, http://www.globus.org.
[18] Apache Tomcat, http://tomcat.apache.org.
[19] OASIS, WS-ResourceLifetime, http://docs.oasis-

open.org/wsrf/2005/03/wsrf-WS-ResourceLifetime-1.2-draft-05.pdf .
[20] OASIS, WS-ResourceProperties, http://docs.oasis-

open.org/wsrf/2005/03/wsrf-WS-ResourceProperties-1.2-draft-06.pdf
[21] OASIS, WS-ServiceGroup, http://docs.oasis-

open.org/wsrf/2005/03/wsrf-WS-ServiceGroup-1.2-draft-04.pdf .
[22] D. Box et al. (W3C members), “Web Services addressing (WS-

Addressing),” Aug. 2004, http://www.w3.org/submission/2004/subm-
ws-addressing-20040810/.

[23] SOAP 1.1, “Simple object access protocol (SOAP) 1.1”, W3C, Note
08 May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[24] J. D. Wood, M. Riding and K. W. Brodlie, “A user interface
framework for Grid-based computational steering and visualization,”
in Proceedings of the UK e-Science All Hands Meeting 2007, NeSC
Sept 2007.

[25] Air Quality Data, http://www.airquality.co.uk.
[26] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid

information services for distributed resource sharing,” 10th IEEE
International Symposium on High Performance Distributed
Computing, IEEE Computer Society Press, pp. 181–184, 2001.

7

