|
Pseudorandom Numbers taken from the Normal Distribution |
SUBROUTINE G05LAF(XMU, VAR, N, X, IGEN, ISEED, IFAIL) integer N, IGEN, ISEED(4), IFAIL double precision XMU, VAR, X(N)See the NAG FORTRAN Library Manual [6] for detailed argument descriptions.
/* Example 5
=========
Shows how to implement a Scilab wrapper calling a NAG routine from the
Fortran library */
#include "stack-c.h"
#undef Complex
#define Complex NagComplex
#define SciComplex doublecomplex
#include "stdio.h"
... (other header file definitions missing here which are in the source code) ...
int nag_intext5(char *fname)
{
// to call this function in scilab use:
// [x,ifail] = nag_psdrnd_norm_fun(n,xmu,var,repeatable)
int m1,n1,l1;
int m2,n2,l2;
int m3,n3,l3;
int m4,n4,l4;
int m5,n5,l5;
int m6,n6,l6;
int n, i, min, max;
int repeatable;
Integer igen, ifail, ndim;
Integer *iseed=0;
double xmu, var;
double *x;
// define minimum and maximum left and right hand arguments
int minlhs=1, minrhs=4, maxlhs=2, maxrhs=4;
Nbvars = 0;
CheckRhs(minrhs, maxrhs);
CheckLhs(minlhs,maxlhs);
GetRhsVar(1, "i", &m1, &n1, &l1); // input n
GetRhsVar(2, "d", &m2, &n2, &l2); // input xmu
GetRhsVar(3, "d", &m3, &n3, &l3); // input var
GetRhsVar(4, MATRIX_OF_BOOLEAN_DATATYPE, &m4, &n4, &l4); // repeatable
// there are also other datatypes for integers, real, string etc.
// MATRIX_OF_INTEGER_DATATYPE on the istk
// MATRIX_OF_RATIONAL_DATATYPE on the sstk
// MATRIX OF DOUBLE DATATYPE on the stk
// MATRIX_OF_COMPLEX_DATATYPE on the zstk
// MATRIX_OF_BOOLEAN_DATATYPE on the istk
// STRING_DATATYPE on the cstk
//******************************************************************
// Read in input variables from Scilab and convert to NAG variables
//******************************************************************
// Read in n
//*============*
if (m1!=1 || n1!=1)
{
sciprint("%s: Dimension should be 1x1 character for arg 1\r\n",fname);
Error(999); goto END;
}
else
{
n = *istk(l1);
ndim = (Integer) n;
}
// Allocate memory for output array x
// ==================================
if ( !(x = malloc(n*sizeof(double))))
{
sciprint("Allocation failure\n");
Error(999); goto END;
}
// Read in xmu
//===========
if (m2!= 1 || n2!=1)
{
sciprint("%s: Dimension should be 1x1 for arg 2\r\n",fname);
sciprint("n = %i", n);
Error(999); goto END;
}
else
{
xmu = *stk(l2);
}
// Read in var
//==============
if (m3!=1 || n3!=1)
{
sciprint("%s: Dimension should be 1x1 for arg 3\r\n",fname);
Error(999); goto END;
}
else
{
var = *stk(l3);
}
// Read in repeatable
//====================
if (m4!=1 || n4!=1)
{
sciprint("%s: Dimension should be 1x1 for arg 4\r\n",fname);
Error(999); goto END;
}
else
{
repeatable = *istk(l4);
}
//***********************************
// End of reading in input variables
//***********************************
if ( !(iseed = malloc(4*sizeof(Integer))))
{
sciprint("Allocation failure\n");
Error(999); goto END;
}
// Call initialisation routine for this rng
// ========================================
igen = 0; // Basic generator
iseed[0] = 23;
iseed[1] = 4;
iseed[2] = 10;
iseed[3] = 1985;
// Initialise the rng either repeatably or not repeatably
if (repeatable)
{
g05kbf_(&igen, iseed);
}
else
{
g05kcf_(&igen, iseed);
}
// Call random number generator based on Normal PDF
//* ================================================
ifail = -1;
g05laf_(&xmu, &var, &ndim, x, &igen, iseed, &ifail);
// Print NAG error message if routine fails
//=========================================
if (ifail != 0)
sciprint("g05laf failed");
// Create output variables for Scilab
//====================================
CreateVar(5, "d", &n, &m1, &l5); // x
CreateVar(6, "i", &n1, &m1, &l6); // ifail
// Assign scilab output variables
//================================
for (i=0;i<n;i++)
{
*stk(l5+i) = x[i];
}
*istk(l6) = (int) ifail;
// Assign order for output variables
//===================================
LhsVar(1) = 5;
LhsVar(2) = 6;
END:
// Deallocate memory
//===================
if (x) free(x);
if (iseed) free(iseed);
return(0);
}
Points to note about this code:
To compile and link this function, you need to run the build script nag_builder5.sce which links this interface to the function name fname that will be seen in Scilab. This must be run in the same directory as the interface file, and when run successfully, generates a loader script loader.sce that needs to be executed in order to dynamically link the newly created library into Scilab.
This builder script looks slightly different from the previous ones, as we are linking to the NAG Fortran library.
exec nag_builder5.sce
exec loader.sce
If the function built and the loader.sce file loaded the function without problem, then we can use the function within Scilab, either on the command-line or in a script. Here we run the example script, nag_example5.sce.
--> exec nag_example5.sce
ifail =
0.
x =
0.9074485
1.1109788
0.8802789
1.4147883
2.1821836
3.5388501
1.3572214
3.0131266
2.5570866
2.1172563
Tip: If you get any error messages in Scilab check the troubleshooting section.