In addition, NAG recommends that before calling any Library routine you should read the following reference material (see Section 5):
(a) Essential Introduction
(b) Chapter Introduction
(c) Routine Document
The libraries supplied with this implementation have been compiled in a manner that facilitates the use of the OpenMP threading model. Lower-level threading models such as Pthreads are not supported.
http://www.nag.co.uk/doc/inun/fs22/l6adfl/postrelease.html
for details of any new information related to the applicability or usage of this implementation.
In this section we assume that the library has been installed in the directory [INSTALL_DIR].
By default [INSTALL_DIR] (see Installer's Note (in.html)) is /opt/NAG/fsl6a22dfl or /usr/local/NAG/fsl6a22dfl depending on your system; however it could have been changed by the person who did the installation. To identify [INSTALL_DIR] for this installation:
gfortran -fopenmp driver.f [INSTALL_DIR]/lib/libnagsmp.a \where driver.f is your application program ; or
[INSTALL_DIR]/acml4.3.0/lib/libacml_mp.a
gfortran -fopenmp driver.f [INSTALL_DIR]/lib/libnagsmp.so \if the shareable library is required.
-L[INSTALL_DIR]/acml4.3.0/lib -lacml_mp -lacml_mv
If the compiled NAG Library for SMP & Multicore libraries and the supplied ACML libraries are installed in, or are pointed at by symbolic links from, directories in the search path of the linker, such as /usr/lib64, then you may alternatively link in the following manner:
gfortran -fopenmp driver.f -lnagsmp -lacml_mp -lacml_mvThis will usually link to the shareable library in preference to the static library if both the libraries are at the same location.
To use the static libraries you need to use -Wl,-Bstatic and -Wl,-Bdynamic as follows:
gfortran -fopenmp driver.f -Wl,-Bstatic -lnagsmp -lacml_mp -Wl,-Bdynamic
If your application uses the NAG shareable library then the environment variable LD_LIBRARY_PATH must be set or extended, as follows, to allow run time linkage. In addition, the environment variable LD_LIBRARY_PATH must contain [INSTALL_DIR]/acml4.3.0/lib.
In the C shell, type:
setenv LD_LIBRARY_PATH [INSTALL_DIR]/lib:[INSTALL_DIR]/acml4.3.0/libto set LD_LIBRARY_PATH, or
setenv LD_LIBRARY_PATH [INSTALL_DIR]/lib:[INSTALL_DIR]/acml4.3.0/lib:\to extend LD_LIBRARY_PATH if you already have it set.
${LD_LIBRARY_PATH}
In the Bourne shell, type:
LD_LIBRARY_PATH=[INSTALL_DIR]/lib:[INSTALL_DIR]/acml4.3.0/lib export LD_LIBRARY_PATHto set LD_LIBRARY_PATH, or
LD_LIBRARY_PATH=[INSTALL_DIR]/lib:[INSTALL_DIR]/acml4.3.0/lib:${LD_LIBRARY_PATH} export LD_LIBRARY_PATHto extend LD_LIBRARY_PATH if you already have it set.
Note that you may also need to set LD_LIBRARY_PATH to point at other things such as compiler run-time libraries, for example if you are using a newer version of the compiler.
setenv OMP_NUM_THREADS NIn the Bourne shell, type:
set OMP_NUM_THREADS=N export OMP_NUM_THREADSwhere N is the number of processors required. OMP_NUM_THREADS may be re-set between each execution of the program, as desired.
(a) subroutines are called as such;
(b) functions are declared with the right type;
(c) the correct number of arguments are passed; and
(d) all arguments match in type and structure.
These interface blocks have been generated automatically by analysing the source code for the NAG Library for SMP & Multicore. As a consequence, and because these files have been thoroughly tested, their use is recommended in preference to writing your own declarations.
The NAG Library for SMP & Multicore Interface Block files are organised by Library chapter. The module names are:
nag_f77_a_chapter nag_f77_c_chapter nag_f77_d_chapter nag_f77_e_chapter nag_f77_f_chapter nag_f77_g_chapter nag_f77_h_chapter nag_f77_m_chapter nag_f77_p_chapter nag_f77_s_chapter nag_f77_x_chapterThese are supplied in pre-compiled form (.mod files) and they can be accessed by specifying the -I pathname option on each compiler invocation, where pathname ([INSTALL_DIR]/nag_interface_blocks) is the path of the directory containing the compiled interface blocks. The interface block files are also supplied in source form, but these are only required if the precompiled form is incompatible with the compiler in use.
In order to make use of these modules from existing Fortran 77 code, the following changes need to be made:
The above steps need to be done for each unit (main program, function or subroutine) in your code.
These changes are illustrated by showing the conversion of the Fortran 77 version of the example program for NAG Library for SMP & Multicore routine D01DAF. Please note that this is not exactly the same as the example program that is distributed with this implementation. Each change is surrounded by comments boxed with asterisks.
* D01DAF Example Program Text * Mark 14 Revised. NAG Copyright 1989. ***************************************************** * Add USE statements for relevant chapters * USE NAG_F77_D_CHAPTER, ONLY: D01DAF * * ***************************************************** * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Local Scalars .. DOUBLE PRECISION ABSACC, ANS, YA, YB INTEGER IFAIL, NPTS * .. External Functions .. DOUBLE PRECISION FA, FB, PHI1, PHI2A, PHI2B EXTERNAL FA, FB, PHI1, PHI2A, PHI2B * .. External Subroutines .. ****************************************************** * EXTERNAL declarations need to be removed. * * EXTERNAL D01DAF * * ****************************************************** * .. Executable Statements .. WRITE (NOUT,*) 'D01DAF Example Program Results' YA = 0.0D0 YB = 1.0D0 ABSACC = 1.0D-6 WRITE (NOUT,*) IFAIL = 1 * CALL D01DAF(YA,YB,PHI1,PHI2A,FA,ABSACC,ANS,NPTS,IFAIL) * IF (IFAIL.LT.0) THEN WRITE (NOUT,99998) ' ** D01DAF returned with IFAIL = ', IFAIL ELSE * WRITE (NOUT,*) 'First formulation' WRITE (NOUT,99999) 'Integral =', ANS WRITE (NOUT,99998) 'Number of function evaluations =', NPTS IF (IFAIL.GT.0) WRITE (NOUT,99998) 'IFAIL = ', IFAIL WRITE (NOUT,*) WRITE (NOUT,*) 'Second formulation' IFAIL = 1 * CALL D01DAF(YA,YB,PHI1,PHI2B,FB,ABSACC,ANS,NPTS,IFAIL) * WRITE (NOUT,99999) 'Integral =', ANS WRITE (NOUT,99998) 'Number of function evaluations =', NPTS IF (IFAIL.GT.0) WRITE (NOUT,99998) 'IFAIL = ', IFAIL END IF * 99999 FORMAT (1X,A,F9.4) 99998 FORMAT (1X,A,I5) END * DOUBLE PRECISION FUNCTION PHI1(Y) * .. Scalar Arguments .. DOUBLE PRECISION Y * .. Executable Statements .. PHI1 = 0.0D0 RETURN END * DOUBLE PRECISION FUNCTION PHI2A(Y) * .. Scalar Arguments .. DOUBLE PRECISION Y * .. Intrinsic Functions .. INTRINSIC SQRT * .. Executable Statements .. PHI2A = SQRT(1.0D0-Y*Y) RETURN END * DOUBLE PRECISION FUNCTION FA(X,Y) * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. FA = X + Y RETURN END * DOUBLE PRECISION FUNCTION PHI2B(Y) ***************************************************** * Add USE statements for relevant chapters * USE NAG_F77_X_CHAPTER, ONLY: X01AAF * * ***************************************************** * .. Scalar Arguments .. DOUBLE PRECISION Y * .. External Functions .. ****************************************************** * Function Type declarations need to be removed. * * DOUBLE PRECISION X01AAF * * ****************************************************** ****************************************************** * EXTERNAL declarations need to be removed. * * EXTERNAL X01AAF * * ****************************************************** * .. Executable Statements .. PHI2B = 0.5D0*X01AAF(0.0D0) RETURN END * DOUBLE PRECISION FUNCTION FB(X,Y) * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Intrinsic Functions .. INTRINSIC COS, SIN * .. Executable Statements .. FB = Y*Y*(COS(X)+SIN(X)) RETURN END
Note that the example material has been adapted, if necessary, from that published in the Library Manual, so that programs are suitable for execution with this implementation with no further changes. The distributed example programs should be used in preference to the versions in the Library Manual wherever possible. The directory [INSTALL_DIR]/scripts contains two scripts nagsmp_example and nagsmp_example_shar.
The example programs are most easily accessed by one of the commands
Each command will provide you with a copy of an example program (and its data, if any), compile the program and link it with the appropriate libraries (showing you the compile command so that you can recompile your own version of the program). Finally, the executable program will be run, presenting its output to stdout, which is redirected to a file.
The example program concerned, and the number of OpenMP threads to use, are specified by the arguments to the command, e.g.
nagsmp_example e04ucf 4will copy the example program e04ucfe.f and its data file e04ucfe.d into the current directory and process them to produce the example program results in the file e04ucfe.r.
In order to support all implementations of the Library, the Manual has adopted a convention of using bold italics to distinguish terms which have different interpretations in different implementations.
For this double precision implementation, the bold italicised terms used in the Library Manual should be interpreted as follows:
real means REAL double precision means DOUBLE PRECISION complex means COMPLEX complex*16 means COMPLEX*16 (or equivalent) basic precision means DOUBLE PRECISION additional precision means quadruple precision reduced precision means REAL
Another important bold italicised term is machine precision, which denotes the relative precision to which double precision floating-point numbers are stored in the computer, e.g. in an implementation with approximately 16 decimal digits of precision, machine precision has a value of approximately 1.0D-16.
The precise value of machine precision is given by the routine X02AJF. Other routines in Chapter X02 return the values of other implementation-dependent constants, such as the overflow threshold, or the largest representable integer. Refer to the X02 Chapter Introduction for more details.
The bold italicised term block size is used only in Chapters F07 and F08. It denotes the block size used by block algorithms in these chapters. You only need to be aware of its value when it affects the amount of workspace to be supplied – see the parameters WORK and LWORK of the relevant routine documents and the Chapter Introduction.
In Chapters F06, F07 and F08, alternate routine names are available for BLAS and LAPACK derived routines. For details of the alternate routine names please refer to the relevant Chapter Introduction. Note that applications should reference routines by their BLAS/LAPACK names, rather than their NAG-style names, for optimum performance.
In this implementation calls to Basic Linear Algebra Subprograms (BLAS) and the Linear Algebra PACKage (LAPACK) routines are implemented by calls to AMD ACML,
except for the following routines:
BLAS_DMAX_VAL BLAS_DMIN_VAL DSGESV ZCGESV
F07ADF/DGETRF F07AEF/DGETRS F07AHF/DGERFS F07ARF/ZGETRF F07ASF/ZGETRS F07AVF/ZGERFS F07BDF/DGBTRF F07BEF/DGBTRS F07BHF/DGBRFS F07BRF/ZGBTRF F07BSF/ZGBTRS F07BVF/ZGBRFS F07CHF/DGTRFS F07CVF/ZGTRFS F07FDF/DPOTRF F07FEF/DPOTRS F07FHF/DPORFS F07FRF/ZPOTRF F07FSF/ZPOTRS F07FVF/ZPORFS F07GEF/DPPTRS F07GHF/DPPRFS F07GSF/ZPPTRS F07GVF/ZPPRFS F07HEF/DPBTRS F07HHF/DPBRFS F07HSF/ZPBTRS F07HVF/ZPBRFS F07JHF/DPTRFS F07JVF/ZPTRFS F07MHF/DSYRFS F07MVF/ZHERFS F07NVF/ZSYRFS F07PHF/DSPRFS F07PVF/ZHPRFS F07QVF/ZSPRFS F07THF/DTRRFS F07TVF/ZTRRFS F07UEF/DTPTRS F07UHF/DTPRFS F07USF/ZTPTRS F07UVF/ZTPRFS F07VEF/DTBTRS F07VHF/DTBRFS F07VSF/ZTBTRS F07VVF/ZTBRFS F08AEF/DGEQRF F08AFF/DORGQR F08AGF/DORMQR F08ASF/ZGEQRF F08ATF/ZUNGQR F08AUF/ZUNMQR F08FEF/DSYTRD F08FFF/DORGTR F08FSF/ZHETRD F08FTF/ZUNGTR F08GFF/DOPGTR F08GTF/ZUPGTR F08HEF/DSBTRD F08HSF/ZHBTRD F08JEF/DSTEQR F08JJF/DSTEBZ F08JKF/DSTEIN F08JSF/ZSTEQR F08JXF/ZSTEIN F08KEF/DGEBRD F08KSF/ZGEBRD F08MEF/DBDSQR F08MSF/ZBDSQR F08PKF/DHSEIN F08PXF/ZHSEIN F08TAF/DSPGV F08TBF/DSPGVX F08TCF/DSPGVD F08TNF/ZHPGV F08TPF/ZHPGVX F08TQF/ZHPGVD
S07AAF F_1 = 1.0E+13 F_2 = 1.0E-14 S10AAF E_1 = 1.8715E+1 S10ABF E_1 = 7.080E+2 S10ACF E_1 = 7.080E+2 S13AAF X_hi = 7.083E+2 S13ACF X_hi = 1.0E+16 S13ADF X_hi = 1.0E+17 S14AAF IFAIL = 1 if X > 1.70E+2 IFAIL = 2 if X < -1.70E+2 IFAIL = 3 if abs(X) < 2.23E-308 S14ABF IFAIL = 2 if X > X_big = 2.55E+305 S15ADF X_hi = 2.65E+1 S15AEF X_hi = 2.65E+1 S15AFF underflow trap was necessary S15AGF IFAIL = 1 if X >= 2.53E+307 IFAIL = 2 if 4.74E+7 <= X < 2.53E+307 IFAIL = 3 if X < -2.66E+1 S17ACF IFAIL = 1 if X > 1.0E+16 S17ADF IFAIL = 1 if X > 1.0E+16 IFAIL = 3 if 0.0E0 < X <= 2.23E-308 S17AEF IFAIL = 1 if abs(X) > 1.0E+16 S17AFF IFAIL = 1 if abs(X) > 1.0E+16 S17AGF IFAIL = 1 if X > 1.038E+2 IFAIL = 2 if X < -5.7E+10 S17AHF IFAIL = 1 if X > 1.041E+2 IFAIL = 2 if X < -5.7E+10 S17AJF IFAIL = 1 if X > 1.041E+2 IFAIL = 2 if X < -1.9E+9 S17AKF IFAIL = 1 if X > 1.041E+2 IFAIL = 2 if X < -1.9E+9 S17DCF IFAIL = 2 if abs(Z) < 3.92223E-305 IFAIL = 4 if abs(Z) or FNU+N-1 > 3.27679E+4 IFAIL = 5 if abs(Z) or FNU+N-1 > 1.07374E+9 S17DEF IFAIL = 2 if imag(Z) > 7.00921E+2 IFAIL = 3 if abs(Z) or FNU+N-1 > 3.27679E+4 IFAIL = 4 if abs(Z) or FNU+N-1 > 1.07374E+9 S17DGF IFAIL = 3 if abs(Z) > 1.02399E+3 IFAIL = 4 if abs(Z) > 1.04857E+6 S17DHF IFAIL = 3 if abs(Z) > 1.02399E+3 IFAIL = 4 if abs(Z) > 1.04857E+6 S17DLF IFAIL = 2 if abs(Z) < 3.92223E-305 IFAIL = 4 if abs(Z) or FNU+N-1 > 3.27679E+4 IFAIL = 5 if abs(Z) or FNU+N-1 > 1.07374E+9 S18ADF IFAIL = 2 if 0.0E0 < X <= 2.23E-308 S18AEF IFAIL = 1 if abs(X) > 7.116E+2 S18AFF IFAIL = 1 if abs(X) > 7.116E+2 S18DCF IFAIL = 2 if abs(Z) < 3.92223E-305 IFAIL = 4 if abs(Z) or FNU+N-1 > 3.27679E+4 IFAIL = 5 if abs(Z) or FNU+N-1 > 1.07374E+9 S18DEF IFAIL = 2 if real(Z) > 7.00921E+2 IFAIL = 3 if abs(Z) or FNU+N-1 > 3.27679E+4 IFAIL = 4 if abs(Z) or FNU+N-1 > 1.07374E+9 S19AAF IFAIL = 1 if abs(X) >= 5.04818E+1 S19ABF IFAIL = 1 if abs(X) >= 5.04818E+1 S19ACF IFAIL = 1 if X > 9.9726E+2 S19ADF IFAIL = 1 if X > 9.9726E+2 S21BCF IFAIL = 3 if an argument < 1.583E-205 IFAIL = 4 if an argument >= 3.765E+202 S21BDF IFAIL = 3 if an argument < 2.813E-103 IFAIL = 4 if an argument >= 1.407E+102
X01AAF (pi) = 3.1415926535897932 X01ABF (gamma) = 0.5772156649015328
X02BHF = 2 X02BJF = 53 X02BKF = -1021 X02BLF = 1024 X02DJF = .TRUE.Derived parameters of the floating-point arithmetic
X02AJF = 1.11022302462516E-16 X02AKF = 2.22507385850721E-308 X02ALF = 1.79769313486231E+308 X02AMF = 2.22507385850721E-308 X02ANF = 2.22507385850721E-308Parameters of other aspects of the computing environment
X02AHF = 1.42724769270596E+45 X02BBF = 2147483647 X02BEF = 15 X02DAF = .TRUE.
The Library Manual is available as part of the installation or via download from the NAG website. The most up-to-date version of the documentation is accessible via the NAG website at http://www.nag.co.uk/numeric/FL/FSdocumentation.asp.
The Library Manual is supplied in the following formats:
The following main index files have been provided for these formats:
nagdoc_fl22/xhtml/FRONTMATTER/manconts.xml nagdoc_fl22/pdf/FRONTMATTER/manconts.pdf nagdoc_fl22/html/FRONTMATTER/manconts.htmlUse your web browser to navigate from here.
Advice on viewing and navigating the formats available can be found in the Online Documentation document.
In addition the following are provided:
The NAG Response Centres are available for general enquiries from all users and also for technical queries from sites with an annually licensed product or support service.
The Response Centres are open during office hours, but contact is possible by fax, email and phone (answering machine) at all times.
When contacting a Response Centre, it helps us deal with your enquiry quickly if you can quote your NAG site reference or account number and NAG product code (in this case FSL6A22DFL).
The NAG websites provide information about implementation availability, descriptions of products, downloadable software, product documentation and technical reports. The NAG websites can be accessed at the following URLs:
http://www.nag.co.uk/, http://www.nag.com/ or http://www.nag-j.co.jp/
NAG Ltd Wilkinson House Jordan Hill Road OXFORD OX2 8DR NAG Ltd Response Centre United Kingdom email: support@nag.co.uk Tel: +44 (0)1865 511245 Tel: +44 (0)1865 311744 Fax: +44 (0)1865 310139 Fax: +44 (0)1865 310139 NAG Inc 801 Warrenville Road Suite 185 Lisle, IL 60532-4332 NAG Inc Response Center USA email: support@nag.com Tel: +1 630 971 2337 Tel: +1 630 971 2337 Fax: +1 630 971 2706 Fax: +1 630 971 2706 Nihon NAG KK Hatchobori Frontier Building 2F 4-9-9 Hatchobori Chuo-ku Tokyo 104-0032 Japan email: help@nag-j.co.jp Tel: +81 (0)3 5542 6311 Fax: +81 (0)3 5542 6312