NAG Library Routine Document

S30JAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

S30JAF computes the European option price using the Merton jump-diffusion model.

2 Specification

SUBROUTINE S30JAF(CALPUT, M, N, X, S, T, SIGMA, R, LAMBDA, JVOL, P, LDP, IFAIL)
INTEGER M, N, LDP, IFAIL
DOUBLE PRECISION X(M), S, T(N), SIGMA, R, LAMBDA, JVOL, P(LDP,N)
CHARACTER*1 CALPUT

3 Description

S30JAF uses Merton’s jump-diffusion model (Merton (1976)) to compute the price of a European option. This assumes that the asset price is described by a Brownian motion with drift, as in the Black–Scholes–Merton case, together with a compound Poisson process to model the jumps. The corresponding stochastic differential equation is,

\[\frac{dS}{S} = (\alpha - \lambda k)dt + \sigma dW_t + dq_t. \]

Here \(\alpha \) is the instantaneous expected return on the asset price, \(S \); \(\sigma^2 \) is the instantaneous variance of the return when the Poisson event does not occur; \(dW_t \) is a standard Brownian motion; \(dq_t \) is the independent Poisson process.

This leads to the following price for a European option (see Haug (2007))

\[P_{\text{call}} = \sum_{j=0}^{\infty} e^{-\lambda T} \frac{(\lambda T)^j}{j!} C_j(S, X, T, r, \sigma^2_j), \]

where \(T \) is the time to expiry; \(X \) is the strike price; \(r \) is the annual risk-free interest rate; \(C_j(S, X, T, r, \sigma^2_j) \) is the Black–Scholes–Merton option pricing formula for a European call (see S30AAF).

\[\sigma^2_j = \sqrt{z^2 + \delta^2 \left(\frac{j}{T} \right)}, \]
\[z^2 = \sigma^2 - \lambda \delta^2, \]
\[\delta^2 = \frac{\sigma^2 \gamma}{\lambda}, \]

where \(\sigma \) is the total volatility including jumps; \(\lambda \) is the expected number of jumps given as an average per year; \(\gamma \) is the proportion of the total volatility due to jumps.

The value of a put is obtained by substituting the Black–Scholes–Merton put price for \(C_j(S, X, T, r, \sigma^2_j) \).

4 References

Merton R C (1976) Option pricing when underlying stock returns are discontinuous Journal of Financial Economics 3 125–144
5 Parameters

1: CALPUT – CHARACTER*1

 Input

 On entry: determines whether the option is a call or a put.

 CALPUT = 'C'
 A call. The holder has a right to buy.

 CALPUT = 'P'
 A put. The holder has a right to sell.

 Constraint: CALPUT = 'C' or 'P'.

2: M – INTEGER

 Input

 On entry: the number of strike prices to be used.

 Constraint: M ≥ 1.

3: N – INTEGER

 Input

 On entry: the number of times to expiry to be used.

 Constraint: N ≥ 1.

4: X(M) – double precision array

 Input

 On entry: X(i) must contain X_i, the ith strike price, for i = 1, 2, …, M.

 Constraint: X(i) ≥ z and X(i) ≤ 1/z, where z = X02AMF(), the safe range parameter, for i = 1, 2, …, M.

5: S – double precision

 Input

 On entry: S, the price of the underlying asset.

 Constraint: S ≥ z and S ≤ 1/z, where z = X02AMF(), the safe range parameter.

6: T(N) – double precision array

 Input

 On entry: T(i) must contain T_i, the ith time, in years, to expiry, for i = 1, 2, …, N.

 Constraint: T(i) ≥ z, where z = X02AMF(), the safe range parameter, for i = 1, 2, …, N.

7: SIGMA – double precision

 Input

 On entry: σ, the annual total volatility, including jumps.

 Constraint: SIGMA > 0.0.

8: R – double precision

 Input

 On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.

 Constraint: R ≥ 0.0.

9: LAMBDA – double precision

 Input

 On entry: λ, the number of expected jumps per year.

 Constraint: LAMBDA > 0.0.

10: JVOL – double precision

 Input

 On entry: the proportion of the total volatility associated with jumps.

 Constraint: 0.0 ≤ JVOL < 1.0.
11: P(LDP,N) – double precision array
 On exit: the leading M and N part of the array P contains the computed option prices.

12: LDP – INTEGER
 On entry: the first dimension of the array P as declared in the (sub)program from which S30JAF is called.
 Constraint: LDP ≥ M.

13: IFAIL – INTEGER
 On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 2.3 in the Essential Introduction for details.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
 For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1
 On entry, CALPUT ≠ 'C' or 'P'.

IFAIL = 2
 On entry, M ≤ 0.

IFAIL = 3
 On entry, N ≤ 0.

IFAIL = 4
 On entry, X(i) < z or X(i) > 1/z, where z = X02AMF(), the safe range parameter.

IFAIL = 5
 On entry, S < z or S > 1/z, where z = X02AMF(), the safe range parameter.

IFAIL = 6
 On entry, T(i) < z, where z = X02AMF(), the safe range parameter.

IFAIL = 7
 On entry, SIGMA ≤ 0.0.

IFAIL = 8
 On entry, R < 0.0.

IFAIL = 9
 On entry, LAMBDA ≤ 0.0.
IFAIL = 10

On entry, JVOL < 0.0 or JVOL ≥ 1.0.

IFAIL = 12

On entry, LDP < M.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, \(\Phi \), occurring in \(C_j \). This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An accuracy close to machine precision can generally be expected.

8 Further Comments

None.

9 Example

This example computes the price of a European call with jumps. The time to expiry is 3 months, the stock price is 45 and the strike price is 55. The number of jumps per year is 3 and the percentage of the total volatility due to jumps is 40\%. The risk-free interest rate is 10\% per year and the total volatility is 25\% per year.

9.1 Program Text

* S30JAF Example Program Text

* Mark 22 Release. NAG Copyright 2007.

* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER LDP, MMAX, NMAX
PARAMETER (LDP=8, MMAX=8, NMAX=8)

* .. Local Scalars ..

DOUBLE PRECISION JVOL, LAMBDA, R, S, SIGMA
INTEGER I, IFAIL, J, M, N
CHARACTER PUT

* .. Local Arrays ..

DOUBLE PRECISION P(LDP,NMAX), T(NMAX), X(MMAX)

* .. External Subroutines ..

EXTERNAL S30JAF

* .. Executable Statements ..

WRITE (NOUT,*) 'S30JAF Example Program Results'
WRITE (NOUT,*)
WRITE (NOUT,*) 'Merton Jump-Diffusion Model'

* Skip heading in data file

READ (NIN,*)

* Read problem parameters.

READ (NIN,*) PUT
READ (NIN,*) LAMBDA
READ (NIN,*) S, SIGMA, R, JVOL
READ (NIN,*) M, N

* IF (M.LE.MMAX .AND. N.LE.NMAX) THEN

* Read array of strike/exercise prices, X

READ (NIN,*) (X(I), I=1,M)

* Read array of times to expiry

READ (NIN,*) (T(I), I=1,N)

* IFAIL = 1

* CALL S30JAF(PUT, M, N, X, S, T, SIGMA, R, LAMBDA, JVOL, P, LDP, IFAIL)
IF (IFAIL.EQ.0) THEN
 IF (PUT.EQ.‘C’ .OR. PUT.EQ.‘c’) THEN
 WRITE (NOUT,*), 'European Call :'
 ELSE IF (PUT.EQ.‘P’ .OR. PUT.EQ.‘p’) THEN
 WRITE (NOUT,*), 'European Put :'
 END IF
 WRITE (NOUT,'(A,1X,F8.4)') ' Spot = ', S
 WRITE (NOUT,'(A,1X,F8.4)') ' Volatility = ', SIGMA
 WRITE (NOUT,'(A,1X,F8.4)') ' Rate = ', R
 WRITE (NOUT,'(A,1X,F8.4)') ' Jumps = ', LAMBDA
 WRITE (NOUT,'(A,1X,F8.4)') ' Jump vol = ', JVOL
* WRITE (NOUT,*)
WRITE (NOUT,*), ' Strike Expiry Option Price'
DO 40 I = 1, M
 DO 20 J = 1, N
 WRITE (NOUT,99999) X(I), T(J), P(I,J)
 CONTINUE
20 CONTINUE
40 CONTINUE
ELSE
 WRITE (NOUT,*)
 WRITE (NOUT,99998) IFAIL
END IF
END IF
*
99999 FORMAT (1X,2(F9.4,1X),6X,F9.4)
99998 FORMAT (1X,** S30JAF returned with IFAIL = ’,I5)
END

9.2 Program Data

S30JAF Example Program Data
‘C’ : Call = ‘C’, Put = ’P’
3.0 : LAMBDA (jumps)
45.0 0.25 0.1 0.4 : S, SIGMA, R, JVOL
1 1 : M, N
55.0 : X(I), I = 1,2,...M
0.25 : T(I), I = 1,2,...N

9.3 Program Results

S30JAF Example Program Results

Merton Jump-Diffusion Model
European Call :
Spot = 45.0000
Volatility = 0.25000
Rate = 0.10000
Jumps = 3.0000
Jump vol = 0.4000

Strike Expiry Option Price
55.0000 0.2500 0.2417

__... __