NAG Library Routine Document

S30ABF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose
S30ABF computes the European option price given by the Black–Scholes–Merton formula together with its sensitivities (Greeks).

2 Specification
```fortran
SUBROUTINE S30ABF(CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, DELTA,
1 GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED,
2 COLOUR, ZOMMA, VOMMA, IFAIL)
INTEGER M, N, LDP, IFAIL
double precision X(M), S, T(N), SIGMA, R, Q, P(LDP,N), DELTA(LDP,N),
1 GAMMA(LDP,N), VEGA(LDP,N), THETA(LDP,N), RHO(LDP,N),
2 CRHO(LDP,N), VANNA(LDP,N), CHARM(LDP,N), SPEED(LDP,N),
3 COLOUR(LDP,N), ZOMMA(LDP,N), VOMMA(LDP,N)
CHARACTER*1 CALPUT
```

3 Description
S30ABF computes the price of a European call (or put) option together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters, by the Black–Scholes–Merton formula (see Black and Scholes (1973) and Merton (1973)). The annual volatility, \(\sigma \), risk-free interest rate, \(r \), and dividend yield, \(q \), must be supplied as input. For a given strike price, \(X \), the price of a European call with underlying price, \(S \), and time to expiry, \(T \), is

\[
P_{\text{call}} = S e^{-qT} \Phi(d_1) - X e^{-rT} \Phi(d_2)
\]

and the corresponding European put price is

\[
P_{\text{put}} = X e^{-rT} \Phi(-d_2) - S e^{-qT} \Phi(-d_1)
\]

where \(\Phi \) denotes the cumulative Normal distribution function,

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-z^2/2) \, dz
\]

and

\[
d_1 = \frac{\ln(S/X) + (r-q+\sigma^2/2)T}{\sigma \sqrt{T}},
\]

\[
d_2 = d_1 - \sigma \sqrt{T}.
\]

4 References

5 Parameters

1: CALPUT – CHARACTER*1

On entry: determines whether the option is a call or a put.
CALPUT = 'C'
A call. The holder has a right to buy.
CALPUT = 'P'
A put. The holder has a right to sell.
Constraint: CALPUT = 'C' or 'P'.

2: M – INTEGER

On entry: the number of strike prices to be used.
Constraint: M ≥ 1.

3: N – INTEGER

On entry: the number of times to expiry to be used.
Constraint: N ≥ 1.

4: X(M) – double precision array

On entry: X(i) must contain X(i), the ith strike price, for i = 1, 2, ..., M.
Constraint: X(i) ≥ z and X(i) ≤ 1/z, where z = X02AMF(), the safe range parameter, for i = 1, 2, ..., M.

5: S – double precision

On entry: S, the price of the underlying asset.
Constraint: S ≥ z and S ≤ 1/z, where z = X02AMF(), the safe range parameter.

6: T(N) – double precision array

On entry: T(i) must contain T(i), the ith time, in years, to expiry, for i = 1, 2, ..., N.
Constraint: T(i) ≥ z, where z = X02AMF(), the safe range parameter, for i = 1, 2, ..., N.

7: SIGMA – double precision

On entry: σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: SIGMA > 0.0.

8: R – double precision

On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: R ≥ 0.0.

9: Q – double precision

On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: Q ≥ 0.0.

10: P(LDP,N) – double precision array

On exit: the leading M and N part of the array P contains the computed option prices.
11: LDP – INTEGER

Input

On entry: the first dimension of the arrays P, DELTA, GAMMA, VEGA, THETA, RHO, CRHO, VANNA, CHARM, SPEED, COLOUR, ZOMMA and VOMMA as declared in the (sub)program from which S30ABF is called.

Constraint: \(LDP \geq M \).

12: DELTA(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array DELTA contains the sensitivity, \(\frac{\partial P}{\partial S} \), of the option price to change in the price of the underlying asset.

13: GAMMA(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array GAMMA contains the sensitivity, \(\frac{\partial^2 P}{\partial S^2} \), of DELTA to change in the price of the underlying asset.

14: VEGA(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array VEGA contains the sensitivity, \(\frac{\partial P}{\partial \sigma} \), of the option price to change in the volatility of the underlying asset.

15: THETA(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array THETA contains the sensitivity, \(-\frac{\partial P}{\partial T} \), of the option price to change in the time to expiry of the option.

16: RHO(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array RHO contains the sensitivity, \(\frac{\partial P}{\partial r} \), of the option price to change in the annual risk-free interest rate.

17: CRHO(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array CRHO containing the sensitivity, \(\frac{\partial P}{\partial b} \), of the option price to change in the annual cost of carry rate, \(b \), where \(b = r - q \).

18: VANNA(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array VANNA contains the sensitivity, \(\frac{\partial^2 P}{\partial S \partial \sigma} \), of VEGA to change in the price of the underlying asset or, equivalently, the sensitivity of DELTA to change in the volatility of the asset price.

19: CHARM(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array CHARM contains the sensitivity, \(-\frac{\partial^2 P}{\partial S \partial T} \), of DELTA to change in the time to expiry of the option.

20: SPEED(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array SPEED contains the sensitivity, \(\frac{\partial^3 P}{\partial S^3} \), of GAMMA to change in the price of the underlying asset.

21: COLOUR(LDP,N) – *double precision* array

*Output

On exit: the leading M and N part of the array COLOUR contains the sensitivity, \(-\frac{\partial^3 P}{\partial S^2 \partial T} \), of GAMMA to change in the time to expiry of the option.
22: ZOMMA(LDP,N) – double precision array
 Output
 On exit: the leading M and N part of the array ZOMMA contains the sensitivity, \(\frac{\partial^3 P}{\partial \sigma^3 \theta} \), of GAMMA to change in the volatility of the underlying asset.

23: VOMMA(LDP,N) – double precision array
 Output
 On exit: the leading M and N part of the array VOMMA contains the sensitivity, \(\frac{\partial^2 P}{\partial \sigma \theta} \), of VEGA to change in the volatility of the underlying asset.

24: IFAIL – INTEGER
 Input/Output
 On entry: IFAIL must be set to 0, −1 or 1. If you are unfamiliar with this parameter you should refer to Section 2.3 in the Essential Introduction for details.
 On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
 For environments where it might be inappropriate to halt program execution when an error is detected, the value 0 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value −1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings
If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1
 On entry, CALPUT ≠ 'C' or 'P'.

IFAIL = 2
 On entry, M ≤ 0.

IFAIL = 3
 On entry, N ≤ 0.

IFAIL = 4
 On entry, \(x(i) < z \) or \(x(i) > 1/z \), where \(z = \text{X02AMF()} \), the safe range parameter.

IFAIL = 5
 On entry, \(S < z \) or \(S > 1/z \), where \(z = \text{X02AMF()} \), the safe range parameter.

IFAIL = 6
 On entry, \(T(i) < z \), where \(z = \text{X02AMF()} \), the safe range parameter.

IFAIL = 7
 On entry, SIGMA ≤ 0.0.

IFAIL = 8
 On entry, R < 0.0.

IFAIL = 9
 On entry, Q < 0.0.
IFAIL = 11
On entry, LDP < M.

7 Accuracy
The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, \(\Phi \). This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see S15ABF and S15ADF). An accuracy close to machine precision can generally be expected.

8 Further Comments
None.

9 Example
This example computes the price of a European put with a time to expiry of 0.7 years, a stock price of 55 and a strike price of 60. The risk-free interest rate is 10% per year and the volatility is 30% per year.

9.1 Program Text

* S30ABF Example Program Text
* Mark 22 Release. NAG Copyright 2007.
* .. Parameters ..
 INTEGER NIN, NOUT
 PARAMETER (NIN=5,NOUT=6)
 INTEGER LDP, MMAX, NMAX
 PARAMETER (LDP=50,MMAX=50,NMAX=50)
* .. Local Scalars ..
 DOUBLE PRECISION Q, R, S, SIGMA
 INTEGER I, IFAIL, J, M, N
 CHARACTER PUT
* .. Local Arrays ..
 DOUBLE PRECISION CHARM(LDP,NMAX), COLOUR(LDP,NMAX),
 + CRHO(LDP,NMAX), DELTA(LDP,NMAX), GAMMA(LDP,NMAX),
 + P(LDP,NMAX), RHO(LDP,NMAX), SPEED(LDP,NMAX),
 + T(NMAX), THETA(LDP,NMAX), VANNA(LDP,NMAX),
 + VEGA(LDP,NMAX), VOMMA(LDP,NMAX), X(MMAX),
 + ZOMMA(LDP,NMAX)
* .. External Subroutines ..
 EXTERNAL S30ABF
* .. Executable Statements ..
 WRITE (NOUT,*) 'S30ABF Example Program Results'
 WRITE (NOUT,*)
* Skip heading in data file.
 READ (NIN,*)
* Read problem parameters.
 READ (NIN,*) PUT
 READ (NIN,*) S, SIGMA, R, Q
 READ (NIN,*) M, N
* IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
* Read array of strike/exercise prices, X
 READ (NIN,*) (X(I),I=1,M)
* Read array of times to expiry
 READ (NIN,*) (T(I),I=1,N)
* END IF
* IFAIL = 1
* CALL S30ABF(PUT,M,N,X,S,T,SIGMA,R,Q,P,LDP,DELTA,GAMMA,VEGA,
 + THETA,RHO,CRHO,VANNA,CHARM,SPEED,COLOUR,ZOMMA,
 + VOMMA,IFAIL)
* IF (IFAIL.EQ.0) THEN
 IF (PUT.EQ.‘C’) THEN
WRITE (NOUT,*), 'European Call :'
ELSE IF (PUT.EQ.'P') THEN
 WRITE (NOUT,*), 'European Put :
END IF
WRITE (NOUT,'(A,1X,F8.4)') ' Spot = ', S
WRITE (NOUT,'(A,1X,F8.4)') ' Volatility = ', SIGMA
WRITE (NOUT,'(A,1X,F8.4)') ' Rate = ', R
WRITE (NOUT,'(A,1X,F8.4)') ' Dividend = ', Q
*
WRITE (NOUT,*),
DO 60 J = 1, N,
 WRITE (NOUT,*),
 WRITE (NOUT,99999) T(J)
 WRITE (NOUT,*),
 '+ Strike Price Delta Gamma Vega Theta Rho'
 '+ // Crho,'
 DO 20 I = 1, M,
 WRITE (NOUT,99998) X(I), P(I,J), DELTA(I,J),
 '+ Gamma(I,J), VEGA(I,J), THETA(I,J), RHO(I,J),
 '+ CRHO(I,J)
 20 CONTINUE
*
WRITE (NOUT,*),
 '+ Strike Price Vanna Charm Speed Colour Zomma'
 '+ // Vomma,'
 DO 40 I = 1, M,
 WRITE (NOUT,99998) X(I), P(I,J), VANNA(I,J),
 '+ Charm(I,J), SPEED(I,J), COLOUR(I,J), ZOMMA(I,J),
 '+ VOMMA(I,J)
 40 CONTINUE
*
 60 CONTINUE
ELSE
 WRITE (NOUT,*),
 WRITE (NOUT,99997) IFAIL
END IF
*
END IF
*
99999 FORMAT (1X,'Time to Expiry : ',1X,F8.4)
99998 FORMAT (1X,8(F8.4,1X))
99997 FORMAT (1X,** S30ABF returned with IFAIL = ',I5)
END

9.2 Program Data

S30ABF Example Program Data

'P' : Call = 'C', Put = 'P'
55.0 0.3 0.1 0.0 : S, SIGMA, R, Q
1 1 : M, N
60.0 : X(I), I = 1,2,...M
0.7 : T(I), I = 1,2,...N

9.3 Program Results

S30ABF Example Program Results

European Put :
 Spot = 55.0000
 Volatility = 0.3000
 Rate = 0.1000
 Dividend = 0.0000

Time to Expiry : 0.7000
 Strike Price Delta Gamma Vega Theta Rho CRho
60.0000 6.0245 -0.4770 0.0289 18.3273 -0.7014 -22.5811 -18.3639
60.0000 6.0245 0.2566 -0.2137 -0.0006 0.0215 -0.0972 -0.6816

S30ABF.6 (last) [NP3666/22]