1 Purpose

S30AAF computes the European option price given by the Black–Scholes–Merton formula.

2 Specification

SUBROUTINE S30AAF(CALPUT, M, N, X, S, T, SIGMA, R, Q, P, LDP, IFAIL)
INTEGER M, N, LDP, IFAIL
double precision X(M), S, T(N), SIGMA, R, Q, P(LDP,N)
CHARACTER*1 CALPUT

3 Description

S30AAF computes the price of a European call (or put) option for constant volatility, \(\sigma \), and risk-free interest rate, \(r \), with a possible dividend yield, \(q \), using the Black–Scholes–Merton formula (see Black and Scholes (1973) and Merton (1973)). For a given strike price, \(X \), the price of a European call with underlying price, \(S \), and time to expiry, \(T \), is

\[
P_{\text{call}} = Se^{-qT} \Phi(d_1) - Xe^{-rT} \Phi(d_2)
\]

and the corresponding European put price is

\[
P_{\text{put}} = Xe^{-rT} \Phi(-d_2) - Se^{-qT} \Phi(-d_1)
\]

where \(\Phi \) denotes the cumulative Normal distribution function,

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-z^2/2)dz
\]

and

\[
d_1 = \frac{\ln(S/X) + (r-q+\sigma^2/2)T}{\sigma \sqrt{T}}, \\
d_2 = d_1 - \sigma \sqrt{T}.
\]

4 References

5 Parameters

1: CALPUT – CHARACTER*1

\textit{Input}

\textit{On entry}: determines whether the option is a call or a put.

CALPUT = 'C'

A call. The holder has a right to buy.
CALPUT = 'P'
 A put. The holder has a right to sell.

Constraint: CALPUT = 'C' or 'P'.

2: M – INTEGER

Input
On entry: the number of strike prices to be used.

Constraint: M ≥ 1.

3: N – INTEGER

Input
On entry: the number of times to expiry to be used.

Constraint: N ≥ 1.

4: X(M) – double precision array

Input
On entry: X(i) must contain X_i, the i_th strike price, for i = 1, 2, ..., M.

Constraint: X(i) ≥ z and X(i) ≤ 1/z, where z = X02AMF(), the safe range parameter, for i = 1, 2, ..., M.

5: S – double precision

Input
On entry: S, the price of the underlying asset.

Constraint: S ≥ z and S ≤ 1/z, where z = X02AMF(), the safe range parameter.

6: T(N) – double precision array

Input
On entry: T(i) must contain T_i, the i_th time, in years, to expiry, for i = 1, 2, ..., N.

Constraint: T(i) ≥ z, where z = X02AMF(), the safe range parameter, for i = 1, 2, ..., N.

7: SIGMA – double precision

Input
On entry: σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.

Constraint: SIGMA > 0.0.

8: R – double precision

Input
On entry: r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.

Constraint: R ≥ 0.0.

9: Q – double precision

Input
On entry: q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.

Constraint: Q ≥ 0.0.

10: P(LDP,N) – double precision array

Output
On exit: the leading M and N part of the array P contains the computed option prices.

11: LDP – INTEGER

Input
On entry: the first dimension of the array P as declared in the (sub)program from which S30AAF is called.

Constraint: LDP ≥ M.
12. IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, −1 or 1. If you are unfamiliar with this parameter you should refer to Section 2.3 in the Essential Introduction for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value −1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value −1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1

On entry, CALPUT ≠ 'C' or 'P'.

IFAIL = 2

On entry, M ≤ 0.

IFAIL = 3

On entry, N ≤ 0.

IFAIL = 4

On entry, X(i) < z or X(i) > 1/z, where z = X02AMF(), the safe range parameter.

IFAIL = 5

On entry, S < z or S > 1/z, where z = X02AMF(), the safe range parameter.

IFAIL = 6

On entry, T(i) < z, where z = X02AMF(), the safe range parameter.

IFAIL = 7

On entry, SIGMA ≤ 0.0.

IFAIL = 8

On entry, R < 0.0.

IFAIL = 9

On entry, Q < 0.0.

IFAIL = 11

On entry, LDP < M.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, \(\Phi \). This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the
expansion is of the order of the machine precision (see S15ABF and S15ADF). An accuracy close to machine precision can generally be expected.

8 Further Comments

None.

9 Example

This example computes the prices for six European call options using two expiry times and three strike prices as input. The times to expiry are taken as 0.7 and 0.8 years respectively. The stock price is 55, with strike prices, 58, 60 and 62. The risk-free interest rate is 10% per year and the volatility is 30% per year.

9.1 Program Text

* S30AAF Example Program Text
* Mark 22 Release. NAG Copyright 2007.
* .. Parameters ..
 INTEGER NIN, NOUT
 PARAMETER (NIN=5,NOUT=6)
 INTEGER LDP, MMAX, NMAX
 PARAMETER (LDP=50,MMAX=50,NMAX=50)
* .. Local Scalars ..
 DOUBLE PRECISION Q, R, S, SIGMA
 INTEGER I, IFAIL, J, M, N
 CHARACTER PUT
* .. Local Arrays ..
 DOUBLE PRECISION P(LDP,NMAX), T(NMAX), X(MMAX)
* .. External Subroutines ..
 EXTERNAL S30AAF
* .. Executable Statements ..
 WRITE (NOUT,*) 'S30AAF Example Program Results'
 WRITE (NOUT,*)
 WRITE (NOUT,*) 'Black-Scholes-Merton formula'
 WRITE (NOUT,*)
 WRITE (NOUT,*) ' Strike Expiry Option Price'
 DO 40 I = 1, M
 DO 20 J = 1, N
 WRITE (NOUT,*)
 WRITE (NOUT,*) ' Strike = ', X(I)
 WRITE (NOUT,*) ' Expiry = ', T(J)
 WRITE (NOUT,*) ' Option Price = ', P(I,J)
 END DO 40

S30AAF
S30AAF

```
WRITE (NOUT,99999) X(I), T(J), P(I,J)
20    CONTINUE
40    CONTINUE
ELSE
    WRITE (NOUT,*)
    WRITE (NOUT,99998) IFAIL
    END IF
END IF
```

9.2 Program Data

S30AAF Example Program Data

'C': Call = 'C', Put = 'P'
55.0 0.3 0.1 0.0: S, SIGMA, R, Q
3 2: M, N
58.0
60.0
62.0: X(I), I = 1, 2, ..., M
0.7
0.8: T(I), I = 1, 2, ..., N

9.3 Program Results

S30AAF Example Program Results

Black-Scholes-Merton formula

European Call:
Spot = 55.0000
Volatility = 0.3000
Rate = 0.1000
Dividend = 0.0000

<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Option Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.0000</td>
<td>0.7000</td>
<td>5.9198</td>
</tr>
<tr>
<td>58.0000</td>
<td>0.8000</td>
<td>6.5506</td>
</tr>
<tr>
<td>60.0000</td>
<td>0.7000</td>
<td>5.0809</td>
</tr>
<tr>
<td>60.0000</td>
<td>0.8000</td>
<td>5.6992</td>
</tr>
<tr>
<td>62.0000</td>
<td>0.7000</td>
<td>4.3389</td>
</tr>
<tr>
<td>62.0000</td>
<td>0.8000</td>
<td>4.9379</td>
</tr>
</tbody>
</table>